Abstract
We present a novel, cavity-enhanced spectroscopic technique based on a phase-matched Raman process to detect trace quantities of gas. The essence of this technique is the careful control of cavity dispersion to satisfy the phase-matching condition of coherent anti-Stokes Raman scattering (CARS) enhanced in a high-finesse optical cavity. A 6000-fold improvement of the CARS signal is observed under optimized conditions, indicating that this is a promising tool to quantify Raman-active molecules with an extremely low detection limit.