Analytical Sciences
Online ISSN : 1348-2246
Print ISSN : 0910-6340
ISSN-L : 0910-6340
Rapid Communications
Förster Resonance Energy Transfer Mediated Photoluminescence Quenching in Stoichiometrically Assembled CdSe/ZnS Quantum Dot-Peptide Labeled Black Hole Quencher Conjugates for Matrix Metalloproteinase-2 Sensing
Sreenadh Sasidharan PILLAIHiroshi YUKAWADaisuke ONOSHIMAVasudevanpillai BIJUYoshinobu BABA
Author information
JOURNAL FREE ACCESS
Supplementary material

2017 Volume 33 Issue 2 Pages 137-142

Details
Abstract

The steady state and time-resolved photoluminescence quenching of streptavidin modified CdSe/ZnS quantum dots (QDs) instigated by biotin-peptide-BHQ-1 (biotin-pep-BHQ-1) molecule was investigated. Here, we have achieved an efficient photoluminescence (PL) quenching of QDs with the conjugation of dark quencher (black hole quencher-BHQ) molecules intermediated with the GPLGVRGK peptide. The luminescence of streptavidin-QDs585 was decreased upon titration with a nano molar concentration of the biotin-GPLGVRGK-BHQ-1 molecule. It has been suggested that the decrease of QDs PL occurred through a Förster resonance energy transfer (FRET) mechanism from the analysis of steady state photoluminescence intensity measurements as well as time resolved lifetime measurements of streptavidin-QDs and QDs-(pep-BHQ-1)n conjugates. The sequence of intermediate peptide GPLG↓VRGK can act as a target material for matrix metalloproteinases-2 (MMP-2) produced by cancer cells at its Gly and Val region, shown by the down-headed arrow. Interestingly, here the reported self-assembled QDs-(pep-BHQ-1)n conjugates could detect the presence MMP-2 at a detection limit of 1 ng/mL with a clear luminescence recovery.

  Fullsize Image
Content from these authors
© 2017 by The Japan Society for Analytical Chemistry
Previous article Next article
feedback
Top