Analytical Sciences
Online ISSN : 1348-2246
Print ISSN : 0910-6340
ISSN-L : 0910-6340
Reviews
Is the Oil | Water Interface the Simplest and Best Suited Model for Understanding Biomembranes?
Toshiyuki OSAKAI
Author information
JOURNAL FREE ACCESS

2019 Volume 35 Issue 4 Pages 361-366

Details
Abstract

Many studies have been conducted by using the oil (O) | water (W) interface as a simple model for understanding ion transfer (IT) or electron transfer (ET) across biomembranes. In this review, we revisit the usability of the O | W interface as a biomembrane model. For understanding biomembrane IT, the O | W interface is the simplest and best suited model. For example, the standard Gibbs transfer energy of drug ions at the O | W interface is a useful measure for evaluating their membrane permeability in a conventional in vitro assay, called PAMPA. However, the O | W interface is not necessarily a good model for understanding biomembrane ET. This is because no net current can be observed with the O | W interface, owing to the ET-coupled proton transfer. In such a case, the self-assembled monolayer (SAM) formed on a metal electrode serves as a better model for understanding biomembrane ET.

Fullsize Image
Content from these authors
© 2019 by The Japan Society for Analytical Chemistry
Previous article Next article
feedback
Top