Analytical Sciences
Online ISSN : 1348-2246
Print ISSN : 0910-6340
ISSN-L : 0910-6340
Original Papers
Improvement in Cobalt Phosphate Electrocatalyst Activity toward Oxygen Evolution from Water by Glycine Molecule Addition and Functional Details
Kanta YAMADATomoki HIUEToshiaki INAKehsuan WANGHiroshi KONDOHYoshihisa SAKATAYuh-Lang LEETakeshi KAWAIMasaaki YOSHIDA
Author information
JOURNAL FREE ACCESS
Supplementary material

2020 Volume 36 Issue 1 Pages 35-40

Details
Abstract

Electrochemical water splitting using renewable energy shows promise for the development of sustainable hydrogen production methods. The process requires a highly active electrocatalyst for oxygen evolution to improve the overall water splitting efficiency. The present study showed that oxygen evolution improved dramatically upon the addition of glycine to cobalt phosphate, when the glycine was added to the electrolyte solution during electrodeposition. The functionality of the organic molecules was investigated using in situ UV-vis absorption, in situ X-ray absorption fine structure, and in situ infrared (IR) absorption spectroscopy in the attenuated total reflection mode. The results demonstrated that the glycine molecules assembled cobalt oxide clusters composed of CoO6 (CoOOH) octahedrons a few nanometers in diameter upon the electrodeposition of cobalt catalysts. This suggests that the cobalt-glycine catalyst can decompose water to oxygen gas efficiently, because the number of cobalt oxide clusters increased as active reaction sites upon the addition of glycine molecules.

Fullsize Image
Content from these authors
© 2020 by The Japan Society for Analytical Chemistry
Previous article Next article
feedback
Top