2014 Volume 32 Pages 85-94
Spatial variations in impurities (cryoconite) on the glacier surface were investigated on Qaanaaq Ice Cap and Tugto Glacier in the northwest Greenland in the melting season of 2012. Abundance of impurities ranged from 0.36 to 119 g m-2 (dry weight, mean:18.8 g m-2) on bare ice and from 0.01 to 8.7 g m-2 (mean:3.6 g m-2) on snow surface at the study sites. On Qaanaaq Glacier (an outlet glacier of Qaanaaq Ice Cap) impurity abundance was greatest at mid-elevations, with fewer impurities at upper and lower sites. Surface reflectivity was lowest in the mid-elevation area, suggesting that impurities substantially reduce ice surface albedo at mid-elevations on glacier surfaces. Organic matter content in the impurities ranged from 1.4 to 12.0% (mean:5.4%) on the ice and from 3.2 to 10.6% (mean:6.7%) on the snow surface. Microscopy revealed that impurities in the ice areas mainly consisted of cryoconite granules, which are aggregations of mineral particles, filamentous cyanobacteria and other microbes and organic matter, while those in snow areas consisted of mineral particles and snow algae. Results suggest that the spatial variation in the abundance of impurities is caused by supply of mineral particles both from air and ice, and microbial production of organic matter on the glacier surface.