Abstract
A Bayesian nonmetric successive categories multidimensional scaling (MDS) method is proposed. The proposed method can be seen as a Bayesian alternative to the maximum likelihood multidimensional successive scaling method proposed by Takane (1981), or as a nonmetric extension of Bayesian metric MDS by Oh and Raftery (2001). The model has a graded-response type measurement model part and a latent metric MDS part. All the parameters are jointly estimated using a Markov chain Monte Carlo (MCMC) estimation technique. Moreover, WinBUGS/OpenBUGS code for the proposed methodology is also given to aid applied researchers. The proposed method is illustrated through the analysis of empirical two-mode three-way similarity data.