Biophysics and Physicobiology
Online ISSN : 2189-4779
ISSN-L : 2189-4779

This article has now been updated. Please use the final version.

Description of peptide bond planarity from high-resolution neutron crystallography
Yuya Hanazono Yu HiranoTaro TamadaKunio Miki
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: e200035

Details
Abstract

Neutron crystallography is a highly effective method for visualizing hydrogen atoms in proteins. In our recent study, we successfully determined the high-resolution (1.2 Å) neutron structure of high-potential iron-sulfur protein, refining the coordinates of some amide protons without any geometric restraints. Interestingly, we observed that amide protons are deviated from the peptide plane due to electrostatic interactions. Moreover, the difference in the position of the amide proton of Cys75 between reduced and oxidized states is possibly attributed to the electron storage capacity of the iron-sulfur cluster. Additionally, we have discussed about the rigidity of the iron-sulfur cluster based on the results of the hydrogen-deuterium exchange. Our research underscores the significance of neutron crystallography in protein structure elucidation, enriching our understanding of protein functions at an atomic resolution.

Fullsize Image
Content from these authors
© 2023 THE BIOPHYSICAL SOCIETY OF JAPAN
feedback
Top