Biophysics and Physicobiology
Online ISSN : 2189-4779
ISSN-L : 2189-4779

This article has now been updated. Please use the final version.

Near-infrared spectroscopic study of blood flow changes in the dorsolateral prefrontal cortex during pain relief by odor stimulation
Yuki OkamuraShogo TakayamaKengo NamikiFusako KoshikawaEtsuro Ito
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: e220001

Details
Abstract

Chronic pain is an unpleasant experience caused by sensory and emotional instability, sometimes independent of actual tissue damage. Pain relief can greatly impact psychologic, social, and economic well-being. Aromatherapy has long been used to alleviate pain and previous studies demonstrated that odors alter cerebral blood flow. In the present study, we used near-infrared spectroscopy to test our hypothesis that olfactory stimulation contributes to pain relief by altering cerebral blood flow in brain regions associated with pain. Pain was induced by transcutaneous electrical stimulation and assessed using a visual analog scale. Peppermint and lavender olfactory stimuli were used. Based on previous results, we focused on the prefrontal cortex. A placebo experiment in which only air stimulation was presented revealed minimal changes in blood flow in the ventromedial prefrontal cortex when comparing pain stimulation alone and a combination of placebo and pain stimulation. We then examined changes in blood flow following the presentation of peppermint or lavender scents. Significant differences in blood flow were observed in the dorsolateral prefrontal cortex (DLPFC) between pain stimulation alone and pain stimulation combined with odor stimulation. These findings supported our previous finding that the DLPFC is involved in pain relief by patch-adhered stimulation, but odor stimulation activated the right DLPFC whereas patch-adhered stimulation suppressed the left DLPFC. One interpretation of the discrepancy is that the contrast of activation between the right and left DLPFC is important in pain relief. Our research will help to elucidate the neurologic mechanisms underlying pain relief.

Fullsize Image
Content from these authors
© 2024 THE BIOPHYSICAL SOCIETY OF JAPAN
feedback
Top