J-STAGE トップ  >  資料トップ  > 書誌事項

応用数理
Vol. 26 (2016) No. 4 p. 7-14

記事言語:

http://doi.org/10.11540/bjsiam.26.4_7

論文

Persistence homology is an important tool for topological data analysis(TDA), and a persistence diagram is a visualization tool of persistent homology. We can compute the geometric features of the data quantitatively using persistence diagrams. When using persistence diagrams, we often want to know which part of the input data is related to the geometric features shown in the persistence diagram. In this paper, we show some approaches to the problem.

Copyright © 2016日本応用数理学会

記事ツール

この記事を共有