応用数理
Online ISSN : 2432-1982
論文
多重ゼータ関数と高次元ランダムウォーク
青山 崇洋
著者情報
ジャーナル フリー

2023 年 33 巻 2 号 p. 62-71

詳細
抄録

It is quite challenging to ascertain whether a certain multivariable function is a characteristic function when its corresponding measure is not trivial to be or not to be a probability measure on ℝd. In this article, we formulate multi-zeta function-based high-dimensional discrete probability distributions with infinitely many mass points on ℤd and ℤd-valued random walks given by those convolutions in terms of multiple zeta functions. In particular, a necessary and sufficient condition is provided for some polynomial finite Euler products to yield characteristic functions.

著者関連情報
© 2023 日本応用数理学会
前の記事 次の記事
feedback
Top