応用数理
Online ISSN : 2432-1982
論文
組合せ論的ゼータ函数の表示式について
森田 英章石川 彩香
著者情報
ジャーナル フリー

2025 年 35 巻 1 号 p. 4-13

詳細
抄録

The combinatorial zeta function is a type of zeta function defined for discrete structures, originating from the study of expressions for the Ihara zeta function of graphs. The Ihara zeta function is expressed in four forms: exponential, Euler, Hashimoto, and Ihara. However, the combinatorial zeta function supports only three of these representations, excluding the Ihara expression. This paper provides an overview of these expressions from the perspective of combinatorial zeta function. Finally, it examines the challenges associated with the Ihara representation and outlines the current progress toward achieving its anticipated conclusions.

著者関連情報
© 2025 日本応用数理学会
前の記事 次の記事
feedback
Top