木更津工業高等専門学校紀要
Online ISSN : 2188-921X
Print ISSN : 2188-9201
ISSN-L : 0285-7901
グラフの直線的平面埋め込みI
山下 哲
著者情報
研究報告書・技術報告書 フリー

2003 年 36 巻 p. 19-24

詳細
抄録
A Graph is a figure consisted of some points, called vertices, and some line segments, called edges, which join two vertices. An embedding f : G → R2 of into the Euclidean plane R2 is called a planar embedding of G. Then G is said to be a planar graph, and the image f(G) is said to be a plane graph of G. An planar embedding of G is called a straight line planar embedding if the image of each edge of G is a straight line segment of R2. Szele posed the question what are the necessary and sufficient conditions that a given graph could be have a straight line planar embedding. He conjectured that every planar graph has a straight line planar embedding. In 1936 Wagner proved that this conjecture is true. In 1948 Fary also solved this conjecture, and furthermore proved that for every planar embedding f : G → R2 of every planar graph G, there exists a straight line planar embedding f : G → R2 such that f is ambient isotopic to f.This theorem is called Fary's theorem. In this paper we explain Fary's proof of Fary's theorem in detail.
著者関連情報
© 2003 独立行政法人 国立高等専門学校機構 木更津工業高等専門学校
前の記事 次の記事
feedback
Top