BPB Reports
Online ISSN : 2434-432X
Regular Article
Method Validation for the Determination of Phthalates in Indoor Air by GC-MS with Solid-Phase Adsorption/Solvent Extraction using Octadecyl Silica Filter and Styrene–Divinylbenzene Copolymer Cartridge
Toshiko Tanaka-KagawaIkue SaitoAya OnukiMaiko TaharaTsuyoshi KawakamiShinobu SakaiYoshiaki IkarashiShiori OizumiMasahiro ChibaHitoshi UemuraNobuhiko MiuraIkuo KawamuraNobumitsu HaniokaHideto Jinno
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2019 Volume 2 Issue 5 Pages 86-90

Details
Abstract

This study proposes and evaluates a precise and labor-saving method for quantifying phthalic-acid esters (PAEs) in indoor air based on solid-phase extraction. Three different adsorbents were evaluated; i.e., two types of octadecyl silica (ODS) filter and a styrene–divinylbenzene (SDB) copolymer cartridge. Calibration curves for five PAEs [diethyl phthalate (DEP), diisobutyl phthalate, di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), and di(2-ethylhexyl) phthalate (DEHP)] were created using an internal standard (DBP-d4). Values of the coefficient of determination (R2) indicated good linearity of the calibration curves (R2 > 0.9953). Among the three adsorbents, the SDB cartridge was easiest to handle because it can be used without cleaning and has the lowest blank value. The recovery of deuterated PAEs (DEP-d4, DBP-d4, BBP-d4, and DEHP-d4) did not differ significantly among the three adsorbents; values were consistently > 89.7% for an air volume of 2.88 m3. During simultaneous indoor air sampling, PAE concentrations were very similar for the three adsorbents. Interlaboratory validation studies were conducted in five laboratories to validate the proposed method for two PAEs (DBP and DEHP). The mean recoveries of the two PAEs added to two types of adsorbent were 91.3–99.9%, the reproducibility relative standard deviations (RSDR) were 5.1–13.1%, and the Horwitz ratio (HorRat) values were 0.31–0.79. The proposed method using solid-phase extraction with two types of adsorbents provides accurate estimates of PAEs in ambient air.

Content from these authors
© 2019 The Pharmaceutical Society of Japan

BPB Reports applies the Creative Commons Attribution (CCBY) license to works we published. The license was developed to facilitate open access - namely, free immediate access to, and unrestricted reuse of, original works to all types. Under this license, authors agree to make articles legally available for reuse, without permissions of fees, for virtually any purpose. Anyone may copy, distribute, or reuse these articles, as long as the author and original source are properly cited.
https://creativecommons.org/licenses/by/4.0/
Previous article
feedback
Top