Chagyo Kenkyu Hokoku (Tea Research Journal)
Online ISSN : 1883-941X
Print ISSN : 0366-6190
ISSN-L : 0366-6190
Review Article
A History of Catechin Chemistry with Special Reference to Tea Leaves
Saijo RyoyasuMiyuki Katoh
Author information
JOURNAL FREE ACCESS

2009 Volume 2009 Issue 107 Pages 107_1-107_18

Details
Abstract
This review describes the history of the discovery of catechins, i.e., flavan 3-ols in the flavonoid compounds, with a special reference to tea leaves.
1. Catechin was first separated from gambier catechu and acacia catechu, and its molecular weight and chemical structure were proposed in 1902. By 1948 the six catechins,(+)-catechin,(-)-epicatechin,(-)-epicatechin 3-O-gallate,(-)-epigallocatechin,(+)-gallocatechin, and(-)-epigallocatechin 3-O-gallate, as shown in Table 1, had been found in a variety of plants, including tea. Table 1 summarizes each catechin, the plant associated with it, and the year and authorship of each first reporting.(-)-Epigallocatechin 3-gallate was isolated from tea leaves in 1948 as the last compound of the six catechins, even though it accounted for the largest proportion of total catechin content. The compound was not isolated and purified by traditional separation methods, such as the ethyl acetate extraction and lead acetate precipitation methods; instead, silica gel column chromatography was the key technique used to succeed in the separation and purification of the compound, from which the determination of the chemical structure followed.
2. The six catechins in fresh tea leaves are easily epimerized by heat treatment to form the corresponding epimerized catechins, as shown in Table 2. Observation indicates that the six natural and six epimerized catechins can be present in heat-treated dried tea leaves or green teas.
3. The chemical structures of the ten catechins, which include the compounds in Table 1, are shown in Table 3. As the contents of the catechins in fresh tea leaves have been reported many times in the literature, it is certain that these compounds are naturally present in tea leaves.
4. Table 4 summarizes the chemical structures of eight minor catechin derivatives found in tea leaves and oolong teas, the first reporting authors, and the year reported. Because the presence of these catechin derivatives in fresh tea leaves has not been strictly determined, it has not yet been made clear whether the compounds are naturally occurring ones. It is possible that some of these compounds might be artifacts.
5. Table 5 summarizes the chemical structures of eight afzelechin derivatives, the first reporting authors, and the year reported.
6. Table 6 summarizes the chemical structures of ten(+)-catechin derivatives, the first reporting authors, and the year reported.
Content from these authors
© 2009 Japanese Society of Tea Science and Technology
Next article
feedback
Top