地球化学
Online ISSN : 2188-5923
Print ISSN : 0386-4073
ISSN-L : 0386-4073
企画総説「授業で教えたい地球化学」
マントル35億年の化学進化
木村 純一
著者情報
ジャーナル フリー

2018 年 52 巻 1 号 p. 29-53

詳細
抄録

Earth's mantle formed at 4.6 Ga and evolved through the Hadean magma ocean stage and subsequent plate tectonics stage since 3.5 Ga. Mantle convection driven by the internal heat is the major driving force of the plate tectonics with considerable tectonic roles of both oceanic and continental plates formed at mid-ocean ridges (MOR) and subduction zones (SZ), respectively. The MOR and SZ regions are the places of plate formations by intensive magma geneses where significant element fractionations between solids and melts are taking place. The MOR and SZ regions are the major factories of tectonic and geochemical mantle evolutions because their products of plates and residual mantles are mixed back into the mantle by stirring or isolated almost permanently. The geochemical fractionations in the MOR and SZ magmatism are modelled based on petrochemical mass balance and elemental and isotopic growths of the magmas and the residues are examined. These combined to enable depicting the thermal, chemical, and isotopic evolutions of the Earth's mantle over 3.5 Gyr. The present-day mantle appears to be geochemically heterogeneous and forms large mantle domains in both deep and shallow portions by Mesoproterozoic (1.7 Ga). These suggest relatively sluggish mantle convection after Mesoproterozoic due to mantle cooling.

著者関連情報
© 2018 日本地球化学会
前の記事 次の記事
feedback
Top