IEICE Communications Express
Online ISSN : 2187-0136
ISSN-L : 2187-0136

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

An Interleaved Channel State Information Clustering Scheme for Wireless LAN-based Object Detection Systems
Hiroki SenjiOsamu MutaTomoki MurakamiShinya Otsuki
著者情報
ジャーナル フリー 早期公開

論文ID: 2020XBL0149

この記事には本公開記事があります。
詳細
抄録

In this article, we propose a frequency-domain feature clustering scheme for a machine-learning based object detection utilizing channel state information (CSI) in wireless local area network (WLAN) systems with multiple antennas where CSI frames are captured from nearby wireless devices. In this scheme, all subcarriers (their CSI) are divided into multiple clusters in an interleaved manner and the existence of object is detected by integrating majority decision of cluster-by-cluster machine-learning results. Simulation results show that the proposed interleaved clustering scheme achieves better object detection probability than cases with a localized clustering scheme and without clustering in an indoor propagation environment.

著者関連情報
© 2020 The Institute of Electronics, Information and Communication Engineers
feedback
Top