IEICE Communications Express
Online ISSN : 2187-0136
ISSN-L : 2187-0136

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Evaluation of ensemble learning method for handwritten digits recognition using dual Leap Motions
Noriaki KanekoMasakatsu Ogawa
著者情報
ジャーナル フリー 早期公開

論文ID: 2023XBL0076

この記事には本公開記事があります。
詳細
抄録

Recently, contactless input methods have been attracting attention. To meet such a demand, we focus on handwritten digits recognition. We install contactless hand tracking sensors on the lower and right sides of the subject's fingers and measure data from two directions for each subject’s handwritten digit. We analyze the three types of datasets composed of the data acquired by each sensor and the integrated data by using two types of machine learning models. Based on the results, we select combinations with high accuracy and construct an ensemble learning model. The classification accuracy achieves a maximum of 92.7%, applying the ensemble learning model with the integrated data.

著者関連情報
© 2023 The Institute of Electronics, Information and Communication Engineers
feedback
Top