Cryobiology and Cryotechnology
Online ISSN : 2424-1555
Print ISSN : 1340-7902
Dynamics of Morphological Changes of Adherent Cultured Cells at a Range of Low Temperatures near Physiological Temperature (Time-Lapse Imaging by Digital Holographic Microscopy)
Author information

2017 Volume 63 Issue 1 Pages 45-51


Temperatures higher or lower than physiological temperature cause thermal stress, inducing cell damage and death. These thermal effects are utilized in various medical treatments. One cellular response to stress is morphological change. For example, vesicles and blebs often appear on the surface of the cell membrane. Therefore, gaining a better understanding of the time-series of morphological changes in cells is important, especially in relation to cell death. This study investigated the dynamics of morphological changes, including mobility of adherent cultured cells, under low-temperature stress near physiological temperature, using time-lapse three-dimensional imaging with digital holographic microscopy (DHM), which shows the thickness distribution of cells. The dynamics were roughly classified into two categories: (a) “normal behavior” and (b) “cell damage and death–related behavior.” Based on DHM data, the volume, projected area, average and maximum thickness, and position of the cells were analyzed to investigate deformation of cells, cell growth and division, formation of blebs, collapse of cell structure, and mobility (velocity) of cells.

Information related to the author
© 2017 Japanese Society of Cryobiology and Cryotechnology
Previous article Next article