Cell Structure and Function
Online ISSN : 1347-3700
Print ISSN : 0386-7196
ISSN-L : 0386-7196

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

A sensitive ERK fluorescent probe reveals the significance of minimal EGF-induced transcription
Zhang WeishengJun NakayamaYukino InomataShigeki HigashiyamaToru Hiratsuka
著者情報
キーワード: fluorescent probe, ERK, FRET, KTR
ジャーナル オープンアクセス 早期公開

論文ID: 24070

この記事には本公開記事があります。
詳細
抄録

Extracellular signal-regulated kinase (ERK) regulates multiple cellular functions through distinct activation patterns. Genetically encoded fluorescent probes are instrumental in dissecting the ERK activity dynamics in living cells. Here we modified a previously reported Förster resonance energy transfer (FRET) probe for ERK, EKAREN5 by replacing its mTurquoise2 and YPet sequences with mTurquoise-GL and a synonymous codon variant of YPet, respectively. The modified biosensor, EKAREN5-gl showed an increased sensitivity to EGF-induced ERK activation responding to a very low dose (20 pg/ml) of EGF stimulation. We quantitatively characterized two FRET-based ERK probes, EKAREN5 and EKAREN5-gl, and a subcellular kinase translocation-based probe, ERK-KTR. We found the three biosensors differently respond to EGF stimulations with different intensity, duration, and latency. Furthermore, we investigated how the minimal EGF-induced ERK activation affects the downstream transcription in HeLa cells by comprehensive transcriptional analysis. We found the minimal ERK activation leads to a distinct transcriptional pattern from those induced by higher ERK activations. Our study highlights the significance of sensitive fluorescent probes to understand cellular signal dynamics and the role of minimal ERK activation in regulating transcription.

Key words: fluorescent probe, ERK, FRET, KTR

著者関連情報
© 2024 The Author(s)

This is an open access article distributed under the terms of the Creative Commons BY (Attribution) License (https://creativecommons.org/licenses/by/4.0/legalcode), which permits the unrestricted distribution, reproduction and use of the article provided the original source and authors are credited.
https://creativecommons.org/licenses/by/4.0/
feedback
Top