Drug Discoveries & Therapeutics
Online ISSN : 1881-784X
Print ISSN : 1881-7831
ISSN-L : 1881-7831
Original Articles
Characterization of the chemical structure and innate immune-stimulating activity of an extracellular polysaccharide from Rhizobium sp. strain M2 screened using a silkworm muscle contraction assay
Makoto UraiTomoko AizawaKatsutoshi ImamuraHiroshi HamamotoKazuhisa Sekimizu
Author information

2017 Volume 11 Issue 5 Pages 238-245


We screened innate immunostimulant-producing bacteria using a silkworm muscle contraction assay, and isolated Rhizobium sp. strain M2 from soil. We purified the innate immunostimulant from strain M2, and characterized the chemical structure by nuclear magnetic resonance spectroscopy and chemical analyses. The innate immunostimulant (M2 EPS) comprised glucose, galactose, pyruvic acid, and succinic acid with a molar ratio of 6.8:1.0:0.9:0.4, and had a succinoglycan-like high molecular-weight heteropolysaccharide structure. To determine the structural motif involved in the innate immunostimulating activity, we modified the M2 EPS structure chemically, and found that the activity was increased by removal of the succinic and pyruvic acid substitutions. Strong acid hydrolysis completely inactivated the M2 EPS. Unmasking of the β-1,3/6-glucan structure of the side-chain by deacylation and depyruvylation may enhance the innate immune-stimulating activity of M2 EPS. These findings suggest that the succinoglycan-like polysaccharide purified from strain M2 has innate immune-stimulating activity, and its glycan structure is necessary for the activity.

Information related to the author
© 2017 International Research and Cooperation Association for Bio & Socio-Sciences Advancement
Previous article Next article