Drug Discoveries & Therapeutics
Online ISSN : 1881-784X
Print ISSN : 1881-7831
ISSN-L : 1881-7831
Original Articles
Centella asiatica (L.) extract attenuates inflammation and improve insulin sensitivity in a coculture of lipopolysaccharide (LPS)-induced 3T3-L1 adipocytes and RAW 264.7 macrophages
Siska Andrina KusumastutiDwi Aris Agung NugrahaningsihMae Sri Hartati Wahyuningsih
Author information
JOURNAL FREE ACCESS

2019 Volume 13 Issue 5 Pages 261-267

Details
Abstract

Insulin resistance in obese condition is related to chronic low-grade inflammation which leads to insulin signaling impairment. Centella asiatica (L.) is an herb that exhibits anti-inflammatory and blood sugar-lowering activity (hypoglycemia). The study aims to investigate the molecular mechanism of C. asiatica extract in insulin sensitivity improvement in a coculture of lipopolysaccharide (LPS)-induced 3T3-L1 adipocytes and RAW 264.7 macrophages. A coculture of 3T3-L1 adipocytes and RAW 264.7 macrophages were incubated with LPS to induce insulin resistance in the adipocytes. An extract of C. asiatica was added to coculture cells and after 24 hours, insulin sensitivity and inflammatory response were determined, including glucose consumption, glucose transporter-4 (GLUT-4), insulin receptor substrate-1 (IRS-1), and interleukin-6 (IL-6) mRNA expression. C. asiatica extract at a concentration of 500 µg/mL increased glucose consumption and induced GLUT-4 and IRS-1 mRNA expression significantly in a coculture of LPS-induced 3T3-L1 adipocytes and RAW 264.7 macrophages. The pro-inflammatory cytokines IL-6 mRNA expression was decreased in the coculture cells after treatment with C. asiatica extract at a concentration of 500 µg/mL. This result indicates that C. asiatica has an effect to stimulate glucose consumption in the coculture cells that might be mediated via GLUT-4/IRS-1 pathway as a result of IL-6 inhibition. These findings suggest that the C. asiatica extract inhibits inflammation and improves insulin sensitivity in a coculture of LPS-induced 3T3-L1 adipocytes and RAW 264.7 macrophages.

Content from these authors
© 2019 International Research and Cooperation Association for Bio & Socio-Sciences Advancement
Previous article Next article
feedback
Top