Drug Discoveries & Therapeutics
Online ISSN : 1881-784X
Print ISSN : 1881-7831
ISSN-L : 1881-7831
Brief Report
The BDNF-ERK/MAPK axis reduces phosphatase and actin regulator1, 2 and 3 (PHACTR1, 2 and 3) mRNA expressions in cortical neurons
Daisuke IharaRyotaro OishiShiho KasaharaAimi YamamotoMaki KaitoAkiko Tabuchi
Author information
JOURNAL FREE ACCESS

2024 Volume 18 Issue 4 Pages 255-259

Details
Abstract

Actin rearrangement and phosphorylation-dephosphorylation in the nervous system contribute to plastic alteration of neuronal structure and function. Phosphatase and actin regulator (PHACTR) family members are actin- and protein phosphatase 1 (PP1)-binding proteins. Because some family members act as regulators of neuronal morphology, studying the regulatory mechanisms of PHACTR is valuable for understanding the basis of neuronal circuit formation. Although expression patterns of PHACTR family molecules (PHACTR1–4) vary across distinct brain areas, little is known about the extracellular ligands that influence their mRNA levels. In this study, we focused on an important neurotrophin, brain-derived neurotrophic factor (BDNF), and examined its effect on mRNA expression of PHACTR family member in cortical neurons. PHACTR1-3, but not PHACTR4, were affected by stimulation of primary cultured cortical neurons with BDNF; namely, sustained downregulation of their mRNA levels was observed. The observed downregulation was blocked by an inhibitor of the extracellular signal-regulated protein kinase/mitogen-activated protein kinase (ERK/MAPK) pathway, U0126, suggesting that ERK/MAPK plays an inhibitory role for gene induction of PHACTR1-3. These findings aid the elucidation of how BDNF regulates actin- and PP1-related neuronal functions.

Content from these authors
© 2024 International Research and Cooperation Association for Bio & Socio-Sciences Advancement
Previous article Next article
feedback
Top