Drug Metabolism and Pharmacokinetics
Online ISSN : 1880-0920
Print ISSN : 1347-4367
ISSN-L : 1347-4367
Notes
Benzbromarone Pharmacokinetics and Pharmacodynamics in Different Cytochrome P450 2C9 Genotypes
Shinya UCHIDAKayoko SHIMADAShingen MISAKAHiromitsu IMAIYasuhiro KATOHNaoki INUIKazuhiko TAKEUCHITakashi ISHIZAKIShizuo YAMADAKyoichi OHASHINoriyuki NAMIKIHiroshi WATANABE
著者情報
ジャーナル フリー

2010 年 25 巻 6 号 p. 605-610

詳細
抄録

  Benzbromarone is a uricosuric drug and has been shown to be metabolized predominantly by cytochrome P450(CYP)2C9 in vitro findings. This study aims to investigate the influence of the CYP2C9 genotype on plasma levels of benzbromarone and 6-hydroxybenzbromarone, as well as uric acid lowering effects. A single oral dose pharmacokinetic and pharmacodynamic trial of benzbromarone (100 mg) was performed in 20 healthy volunteers, which included 15 with CYP2C9*1/*1, 4 with CYP2C9*1/*3, and 1 with CYP2C9*3/*3. The oral clearance of benzbromarone in the CYP2C9*1/*1 genotype and CYP2C9*1/*3 genotype was 58.8±25.2 L/hr/kg (mean±SD) and 51.3±7.9 L/hr/kg, respectively, whereas 8.58 L/hr/kg in the CYP2C9*3/*3 genotype. The metabolic ratio (6-hydroxybenzbromarone/benzbromarone) in urine was 38.6±10.7 in the CYP2C9*1/*1 genotype, 35.4±12.4 in the CYP2C9*1/*3 genotype and 12.9 in the CYP2C9*3/*3 genotype. Although benzbromarone significantly increased the urinary excretion and reduced the plasma concentration of uric acid, there were no significant differences in its effects for different CYP2C9 genotypes. These results suggest a critical role for CYP2C9 in the metabolism of benzbromarone in humans and a possible risk of toxicity in the CYP2C9*3 homozygote by lowering clearance of the drug. Further studies are required to assess the clinical impact of CYP2C9 on the metabolism of benzbromarone.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2010 by The Japanese Society for the Study of Xenobiotics
前の記事 次の記事
feedback
Top