Drug Metabolism and Pharmacokinetics
Online ISSN : 1880-0920
Print ISSN : 1347-4367
ISSN-L : 1347-4367
Regular Articles
Cannabidiol Is a Potent Inhibitor of the Catalytic Activity of Cytochrome P450 2C19
Rongrong JIANGSatoshi YAMAORIYasuka OKAMOTOIkuo YAMAMOTOKazuhito WATANABE
著者情報
ジャーナル フリー

2013 年 28 巻 4 号 p. 332-338

詳細
抄録

  The present study investigated the inhibitory effect of cannabidiol (CBD), a major constituent of marijuana, on the catalytic activity of cytochrome P450 2C19 (CYP2C19). (S)-Mephenytoin 4′-hydroxylase activities of human liver microsomes (HLMs) and recombinant CYP2C19 were inhibited by CBD in a concentration-dependent manner (IC50 = 8.70 and 2.51 µM, respectively). Omeprazole 5-hydroxylase and 3-O-methylfluorescein O-demethylase activities in recombinant CYP2C19 were also strongly inhibited by CBD (IC50 = 1.55 and 1.79 µM, respectively). Kinetic analysis for inhibition revealed that CBD showed a mixed-type inhibition against (S)-mephenytoin 4′-hydroxylation by recombinant CYP2C19. To clarify the structural requirements for CBD-mediated CYP2C19 inhibition, the effects of CBD-related compounds on CYP2C19 activity were examined. Olivetol inhibited the (S)-mephenytoin 4′-hydroxylase activity of recombinant CYP2C19 with the IC50 value of 15.3 µM, whereas d-limonene slightly inhibited the activity (IC50 > 50 µM). The inhibitory effect of CBD-2′-monomethyl ether (IC50 = 1.88 µM) on CYP2C19 was comparable to that of CBD, although the inhibitory potency of CBD-2′,6′-dimethyl ether (IC50 = 14.8 µM) was lower than that of CBD. Cannabidivarin, possessing a propyl side chain, showed slightly less potent inhibition (IC50 = 3.45 µM) as compared with CBD, whereas orcinol and resorcinol did not inhibit CYP2C19 activity at all. These results indicate that CBD caused potent CYP2C19 inhibition, in which one free phenolic hydroxyl group and the pentyl side chain of CBD may play important roles.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2013 by The Japanese Society for the Study of Xenobiotics
前の記事 次の記事
feedback
Top