Data Science Journal
Online ISSN : 1683-1470

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

H-Metric: Characterizing Image Datasets via Homogenization Based on Knn-Queries
Welington M. da SilvaJose F. Rodrigues Jr.Agma J. M. TrainaSergio F. da Silva
著者情報
ジャーナル フリー 早期公開

論文ID: 10-007

この記事には本公開記事があります。
詳細
抄録
Precision-Recall is one of the main metrics for evaluating content-based image retrieval techniques. However, it does not provide an ample perception of the properties of an image dataset immersed in a metric space. In this work, we describe an alternative metric named H-Metric, which is determined along a sequence of controlled modifications in the image dataset. The process is named homogenization and works by altering the homogeneity characteristics of the classes of images in the dataset. The result is a process that measures how hard it is to deal with a set of images in respect to content-based retrieval, offering support in the task of analyzing distance function-features extractor configurations.
著者関連情報

この記事は最新の被引用情報を取得できません。

feedback
Top