Environmental Health and Preventive Medicine
Online ISSN : 1347-4715
Print ISSN : 1342-078X
ISSN-L : 1342-078X
Role of ABCB1 and ABCB4 in renal and biliary excretion of perfluorooctanoic acid in mice
Kazuyoshi FurukawaKahori Okamoto-MatsudaKouji H. Harada Mutsuko MinataToshiaki HitomiHatasu KobayashiAkio Koizumi
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
Supplementary material

2024 Volume 29 Pages 21

Details
Abstract

Background: Perfluorooctanoic acid (PFOA) is one of the major per- and polyfluoroalkyl substances. The role of ATP-binding cassette (ABC) transporters in PFOA toxicokinetics is unknown.

Methods: In this study, two ABC transporters, ABCB1 and ABCB4, were examined in mice with single intravenous PFOA administration (3.13 µmol/kg). To identify candidate renal PFOA transporters, we used a microarray approach to evaluate changes in gene expression of various kidney transporters in Abcb4 null mice.

Results: Biliary PFOA concentrations were lower in Abcb4 null mice (mean ± standard deviation: 0.25 ± 0.12 µg/mL) than in wild-type mice (0.87 ± 0.02 µg/mL). Immunohistochemically, ABCB4 expression was confirmed at the apical region of hepatocytes. However, renal clearance of PFOA was higher in Abcb4 null mice than in wild-type mice. Among 642 solute carrier and ABC transporters, 5 transporters showed significant differences in expression between wild-type and Abcb4 null mice. These candidates included two major xenobiotic transporters, multidrug resistance 1 (Abcb1) and organic anion transporter 3 (Slc22a8). Abcb1 mRNA levels were higher in Abcb4 null mice than in wild-type mice in kidney. In Abcb4 null mice, Abcb1b expression was enhanced in proximal tubules immunohistochemically, while that of Slc22a8 was not. Finally, in Abcb1a/b null mice, there was a significant decrease in the renal clearance of PFOA (0.69 ± 0.21 vs 1.1 mL ± 0.37/72 h in wild-type mice). A homology search of ABCB1 showed that several amino acids are mutated in humans compared with those in rodents and monkeys.

Conclusions: These findings suggest that, in the mouse, Abcb4 and Abcb1 are excretory transporters of PFOA into bile and urine, respectively.

Fullsize Image
Content from these authors

This article cannot obtain the latest cited-by information.

© The Author(s) 2024.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
http://creativecommons.org/licenses/by/4.0/
Previous article Next article
feedback
Top