Abstract
A novel nanofabrication technique, namely three-dimensional (3D) nanotemplate pulsed laser deposition, that can typically be useful for metal oxides has been developed by combining inclined pulsed laser deposition with a 3D nanotemplate prepared by nanoimprint lithography. This method enables the production of size-adjustable and extremely small functional oxide nanostructures with a high packing density over a large area, with high controllability of their shape, location, and alignment. We report various 3D functional metal oxide nanostructures, such as a luminescent ZnO nanobox structure, a ferromagnetic semiconductor (Fe,Zn)3O4 nanobox structure, an (Fe,Mn)3O4 epitaxial nanowall wire structure, and an in-plane metal-oxide-semiconductor hetero epitaxial nanowire structure. These nanostructures should be good candidates for optoelectronic, spintronic, and electronic nanoscale device applications. [DOI: 10.1380/ejssnt.2015.279]