Electrochemistry
Online ISSN : 2186-2451
Print ISSN : 1344-3542
ISSN-L : 1344-3542
Headlines
A Concept of Chemical Potential Pumping Effect of Nonstoichiometric Oxides and the NOx Sensing Mechanism of the Perovskite-Type La0.5Sr0.5FeO3
Junichiro MIZUSAKIHiroyuki OHAMAKeiji YASHIROTatsuya KAWADA
Author information
JOURNAL FREE ACCESS

2006 Volume 74 Issue 12 Pages 949-955

Details
Abstract

A concept of chemical potential pumping effect was introduced to describe the NOx sensing mechanism of oxide catalysts with high electronic conductivity and large carrier density. When NOx gas in a gas-stream decomposed on the surface of the catalyst oxides continuously, the high oxygen potential released by the decomposition of NOx stationarily covered the whole surface of the oxide. Then, the bulk oxide was equilibrated with the steady-state high oxygen potential of the surface, which was much larger than that determined by the oxygen pressure of the surrounding gas-phase. This effect was confirmed by the conductivity enhancement of La2CuO4 and La0.5Sr0.5FeO3 with NO2 as well as nonstoichiometry variation of La0.5Sr0.5CoO3 and EMF of galvanic cell with La0.6Sr0.4CoO3−d. It was shown that the chemical potential pumping effect appears essentially on dense materials while the effect is hardly observed on porous material with large surface relative. On La0.5Sr0.5FeO3 as well as on La2CuO4, NO2 was found to decompose into NO and O2, while NO was almost inactive on these oxides.

Content from these authors
© 2006 The Electrochemical Society of Japan
Previous article Next article
feedback
Top