Electrochemistry
Online ISSN : 2186-2451
Print ISSN : 1344-3542
ISSN-L : 1344-3542

This article has now been updated. Please use the final version.

UNCORRECTED PROOF
Fabrication and High-temperature Electrochemical Stability of LiFePO4 Cathode/Li3PO4 Electrolyte Interface
Dongho KANGKotaro ITOKeisuke SHIMIZUKenta WATANABENaoki MATSUIKota SUZUKIRyoji KANNOMasaaki HIRAYAMA
Author information
JOURNAL OPEN ACCESS Advance online publication
J-STAGE Data

Article ID: 24-00017

UNCORRECTED PROOF: March 06, 2024
ACCEPTED MANUSCRIPT: February 21, 2024
Details
Article 1st page
Abstract

A thin-film battery composed of a LiFePO4 cathode/Li3PO4 electrolyte/Li anode was fabricated on a Pt/Ti/Si (PTS) substrate via RF magnetron sputtering. The amorphous Li3PO4 film was densely stacked on a 60 nm-thick LiFePO4 film, which provided a suitable reaction field for understanding the electrochemical properties of LiFePO4 at the interface with the solid electrolyte. The LiFePO4 cathode film exhibited highly reversible lithium desertion/insertion at the interface at room temperature and 60 °C, without any side reactions. An irreversible oxidation reaction occurred during the initial charging process at 100 °C, leading to an increase in the charge-transfer resistance of the LiFePO4/Li3PO4 interface with no significant decrease in the lithium desertion/insertion capacity of LiFePO4. This result suggests the formation of a resistive interphase via the decomposition of Li3PO4 at 100 °C. A severe decrease in capacity is observed at 125 °C, which indicates the LiFePO4-side interface contributed to the side reactions. The film battery exhibits a severe decrease in capacity at 125 °C.

Content from these authors
© The Author(s) 2024. Published by ECSJ.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium provided the original work is properly cited. [DOI: 10.5796/electrochemistry.24-00017].
http://creativecommons.org/licenses/by/4.0/
feedback
Top