Electrochemistry
Online ISSN : 2186-2451
Print ISSN : 1344-3542
ISSN-L : 1344-3542

This article has now been updated. Please use the final version.

UNCORRECTED PROOF
Electrochemical Characteristics of Lithium-Air Secondary Battery Using Amide-Based Ionic Liquids
Koichi UI Sota NAKAMURAYushi SATOTatsuya TAKEGUCHIMasayuki ITAGAKI
Author information
JOURNAL OPEN ACCESS Advance online publication
J-STAGE Data

Article ID: 24-69015

UNCORRECTED PROOF: February 21, 2024
ACCEPTED MANUSCRIPT: February 03, 2024
Details
Abstract

We fabricated lithium-air secondary batteries (LABs) employing amide-based ionic liquids (ILs) as electrolytes and evaluated their electrochemical characteristics. Lithium bis(trifluoromethanesulfonyl)amide (Li-TFSA) was employed as the lithium salt, N-methyl-N-propylpyrrolidinium-TFSA (Py13 system) with a cyclic aliphatic cation in the ILs, and N, N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium-TFSA (DEME system) with an acyclic aliphatic cation. The constant-current discharge-charge tests with the capacity controlled at 200 mAh (g-carbon)−1 showed that the overvoltage of the LABs using the Py13 system was lower than those of LABs using the DEME system and the organic solvent-based system electrolyte. The cycling performance of the DEME system rapidly decreased at the 74th cycle, while the Py13 system showed 200 mAh (g-carbon)−1 up to the 100th cycle, indicating a high stability. Electrochemical impedance measurements showed that the LABs using the Py13 system had the lowest interfacial resistance after the 1st charge. These results indicated that the use of the Py13 system with a relatively high electrical conductivity and low viscosity as the electrolyte would stabilize the cycling performance of the LABs.

Fullsize Image
Content from these authors
© The Author(s) 2024. Published by ECSJ.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium provided the original work is properly cited. [DOI: 10.5796/electrochemistry.24-69015].
http://creativecommons.org/licenses/by/4.0/
feedback
Top