Earth, Planets and Space
Online ISSN : 1880-5981
Print ISSN : 1343-8832
Low-frequency electromagnetic waves and instabilities within the Martian bi-ion plasma
K. SauerE. DubininK. BaumgärtelV. Tarasov
著者情報
ジャーナル フリー

1998 年 50 巻 3 号 p. 269-278

詳細
抄録
The Martian environment is characterized by the presence of heavy (oxygen) ions of planetary origin which strongly influence the solar wind dynamics, including the bow shock structure and position and may cause additional plasma boundaries in the magnetosheath. In this paper the dispersion characteristics of low-frequency electromagnetic waves (LFEW) in the proton gyrofrequency range are studied. The excitation of these waves results from the relative motion between the solar wind protons and planetary heavy ions, which are considered as unmagnetized and, therefore, may act like a beam in the solar wind. The model takes into account the small extension of the Martian magnetosphere compared with the pickup gyroradius of an exospheric ion. From the dispersion analysis it was found that the most unstable waves with relatively high growth rates propagate oblique to the ambient magnetic field. For small propagation angle to the magnetic field these are right-hand polarized whistler waves in the solar wind frame, and due to Doppler shift they appear near to the proton cyclotron frequency as left-hand polarized waves in the beam (spacecraft) frame. We suggest that the sporadic LFEW emission as seen in the upstream region of Mars by Phobos-2 may indicate the existence of localized “heavy ion bunches” whose origin is relatively unclear, but a possible relation to the Martian moons cannot be excluded. Especially, the socalled Phobos events marked by spectral peaks around the proton cyclotron frequency may be interpreted as signatures of the solar wind interaction with a tenuous gas torus. A comparable situation is known from the AMPTE Ba and Li releases where during the late stages of the experiments an enhanced proton cyclotron emission was observed as well. Another important aspect of LFEW excitation is its role in proton deceleration and heating upstream the bow shock where turbulent processes may provide a strong momentum coupling between the solar wind and the newly generated ions of planetary origin.
著者関連情報

この記事は最新の被引用情報を取得できません。


この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
前の記事 次の記事
feedback
Top