Earth, Planets and Space
Online ISSN : 1880-5981
Print ISSN : 1343-8832
Can we estimate total magnetization directions from aeromagnetic data using Helbig's integrals?
Jeffrey D. Phillips
著者情報
ジャーナル フリー

2005 年 57 巻 8 号 p. 681-689

詳細
抄録
An algorithm that implements Helbig's (1963) integrals for estimating the vector components (mx, my, mz) of the magnetic dipole moment from the first order moments of the vector magnetic field components (ΔX, ΔY, ΔZ) is tested on real and synthetic data. After a grid of total field aeromagnetic data is converted to vector component grids using Fourier filtering, Helbig's infinite integrals are evaluated as finite integrals in small moving windows using a quadrature algorithm based on the 2-D trapezoidal rule. Prior to integration, best-fit planar surfaces must be removed from the component data within the data windows in order to make the results independent of the coordinate system origin. Two different approaches are described for interpreting the results of the integration. In the “direct” method, results from pairs of different window sizes are compared to identify grid nodes where the angular difference between solutions is small. These solutions provide valid estimates of total magnetization directions for compact sources such as spheres or dipoles, but not for horizontally elongated or 2-D sources. In the “indirect” method, which is more forgiving of source geometry, results of the quadrature analysis are scanned for solutions that are parallel to a specified total magnetization direction.
著者関連情報

この記事は最新の被引用情報を取得できません。


この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
前の記事 次の記事
feedback
Top