Experimental Animals
Online ISSN : 1881-7122
Print ISSN : 1341-1357
ISSN-L : 0007-5124
Replication of Enterotropic and Polytropic Murine Coronaviruses in Cultured Cell Lines of Mouse Origin
Shigeru KYUWAKazutaka OHSAWAHiroshi SATOToru URANO
ジャーナル フリー

2000 年 49 巻 4 号 p. 251-257


To understand the virus-cell interactions that occur during murine coronavirus infection, six murine cell lines (A3-1M, B16, CMT-93, DBT, IC-21 and J774A.1) were inoculated with eight murine coronaviruses, including prototype strains of both polytropic and enterotropic biotypes, and new isolates. All virus strains produced a cytopathic effect (CPE) with cell-to-cell fusion in B16, DBT, IC-21 and J774A.1 cells. The CPE was induced most rapidly in IC-21 cells and was visible microscopically in all cell lines tested. In contrast, the coronaviruses produced little CPE in A3-1M and CMT-93 cells. Although most virus-infected cells, except KQ3E-infected A3-1M, CMT-93 and J774A.1 cells, produced progeny viruses in the supernatants when assayed by plaque formation on DBT cells, the kinetics of viral replication were dependent on both the cell line and virus strain; replication of prototype strains was higher than that of new isolates. There was no significant difference in replication of enterotropic and polytropic strains. B16 cells supported the highest level of viral replication. To determine the sensitivity of the cell lines to murine coronaviruses, the 50% tissue culture infectious dose of the coronaviruses was determined with B16, DBT, IC-21 and J774A.1 cells, and compared to that with DBT cells. The results indicate that IC-21 cells were the most sensitive to murine coronaviruses. These data suggest that B16 and IC-21 cells are suitable for large-scale preparation and isolation of murine coronaviruses, respectively.

© 2000 Japanese Association for Laboratory Animal Science
前の記事 次の記事