Experimental Animals
Online ISSN : 1881-7122
Print ISSN : 1341-1357
ISSN-L : 0007-5124
Original
Quinestrol Treatment Induced Testicular Damage via Oxidative Stress in Male Mongolian Gerbils (Meriones unguiculatus)
Wei SHENDazhao SHIDeng WANDYongwang GUOShuzhen HAIZhuo YUE
Author information
JOURNAL OPEN ACCESS

2011 Volume 60 Issue 5 Pages 445-453

Details
Abstract
The hypothesis that quinestrol exerts testicular damage via oxidative stress was investigated in male gerbils using a daily oral gavage of 3.5 mg/kg body weight for 2 weeks (the multidose-treated group) or 35 mg/kg body weight (the single-dose-treated group). The testicular histological morphology, antioxidant capacity and malondialdehyde (MDA) concentration in testicular tissue and plasma were assessed at 15, 30, and 60 days following treatment. The results showed that the activity of the antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxide (GSH-Px), and total antioxidant capacity (T-AOC), at 15 days after treatment in testicular tissue decreased, which led to the MDA concentration increasing while at the same time germ cells were rarefied and showed an irregular distribution in seminiferous tubules of quinestrol-treated gerbils. At 30 days, the testicular weight and antioxidant capacity continued to decrease, while the MDA concentration continued to increase, and testicular histopathological changes were more pronounced. Single-dose and multidose drug treatment had a similar effect on the antioxidant enzymes and MDA, but testicular damage was relatively severe at 15 and 30 days after multidose treatment. By 60 days of treatment withdrawal, however, the above parameters recovered to control levels. The results show that quinestrol causes reversible damage to gerbil testes that might be caused by the oxidative stress and that multidose treatment has more effects on testicular damage compared with one-dose treatment.
Content from these authors
© 2011 Japanese Association for Laboratory Animal Science

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top