Experimental Animals
Online ISSN : 1881-7122
Print ISSN : 1341-1357
ISSN-L : 0007-5124
Current issue
Displaying 1-10 of 10 articles from this issue
Original
  • Tianjiao Sheng, Lei Wang, Simeng Yan, Qiuyu Wei, Xiao Geng, Weiru Lan, ...
    2024 Volume 73 Issue 4 Pages 357-369
    Published: 2024
    Released on J-STAGE: October 23, 2024
    Advance online publication: April 09, 2024
    JOURNAL OPEN ACCESS

    Ulcerative colitis (UC) is characterized by overactive inflammatory response, impaired intestinal mucosal barrier and disrupted gut microbiota. Youhua Kuijie formula is a classic empirical prescription based on the pathogenesis of UC. The present study was designed to verify the protective effect of Youhua Kuijie formula on DSS-induced UC in mice and uncover the related mechanism. Youhua Kuijie formula were orally administrated to UC mice induced by DSS dissolved in drinking water for ten days. The protective effect of Youhua Kuijie formula was evidenced by reduced pathological symptoms accompanied by palliative inflammatory response and relatively intact intestinal barrier. The data from 16S rRNA gene sequencing and GC-MS untargeted metabolomics indicated that the supplement of Youhua Kuijie formula restructured gut microbiota community structure, and thereby modulated the metabolic profiles in UC mice. The analysis of pathway enrichment analysis suggested the major alterations in metabolic pathway were related to protein digestion and absorption. Besides, the results of the following experiments suggested that Youhua Kuijie formula treatment increased adenosine monophosphate-activated protein kinase (AMPK) activation, decreased mechanistic target of rapamycin (mTOR) phosphorylation, and thereby reversing autophagy deficiency in the intestinal tract of UC mice. Collectively, our results demonstrated that the regulation of AMPK/mTOR was involved in Youhua Kuijie formula administration mediated protective effect on UC.

    Download PDF (12936K)
  • Shuji Shimada, Kyosuke Tanimoto, Hayato Sasaki, Takumi Taga, Takeru Sa ...
    2024 Volume 73 Issue 4 Pages 370-375
    Published: 2024
    Released on J-STAGE: October 23, 2024
    Advance online publication: April 20, 2024
    JOURNAL OPEN ACCESS

    Several artificial intelligence (AI) systems have been developed for glomerular pathology analysis in clinical settings. However, the application of AI systems in nonclinical fields remains limited. In this study, we trained a convolutional neural network model, which is an AI algorithm, to classify the severity of Tensin 2 (TNS2)-deficient nephropathy into seven categories. A dataset consisting of 803 glomerular images was generated from kidney sections of TNS2-deficient and wild-type mice. Manual evaluations of the images were conducted to assess their glomerular injury scores. The trained AI achieved approximately 70% accuracy in predicting the glomerular injury score for TNS2-deficient nephropathy. However, the AI achieved approximately 100% accuracy when considering predictions within one score of the true label as correct. The AI’s predicted mean score closely matched the true mean score. In conclusion, while the AI model may not replace human judgment entirely, it can serve as a reliable second assessor in scoring glomerular injury, offering potential benefits in enhancing the accuracy and objectivity of such assessments.

    Download PDF (1158K)
  • Zhi-Hui Guan, Di Yang, Yi Wang, Jia-Bin Ma, Guo-Nian Wang
    2024 Volume 73 Issue 4 Pages 376-389
    Published: 2024
    Released on J-STAGE: October 23, 2024
    Advance online publication: May 25, 2024
    JOURNAL OPEN ACCESS

    Ischemia/reperfusion (I/R) is a pathological process that occurs in numerous organs and is often associated with severe cellular damage and death. Ectodysplasin-A2 receptor (EDA2R) is a member of the TNF receptor family that has anti-inflammatory and antioxidant effects. However, to the best of our knowledge, its role in the progression of myocardial I/R injury remains unclear. The present study aimed to investigate the role of EDA2R during myocardial I/R injury and the molecular mechanisms involved. In vitro, dexmedetomidine (DEX) exhibited a protective effect on hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury and downregulated EDA2R expression. Subsequently, EDA2R silencing enhanced cell viability and reduced the apoptosis of cardiomyocytes. Furthermore, knockdown of EDA2R led to an elevated mitochondrial membrane potential (MMP), repressed the release of Cytochrome C and upregulated Bcl-2 expression. EDA2R knockdown also resulted in downregulated expression of Bax, and decreased activity of Caspase-3 and Caspase-9 in cardiomyocytes, reversing the effects of H/R on mitochondria-mediated apoptosis. In addition, knockdown of EDA2R suppressed H/R-induced oxidative stress. Mechanistically, EDA2R knockdown inactivated the NF-κB signaling pathway. Additionally, downregulation of EDA2R weakened myocardial I/R injury in mice, as reflected by improved left ventricular function and reduced infarct size, as well as suppressed apoptosis and oxidative stress. Additionally, EDA2R knockdown repressed the activation of NF-κB signal in vivo. Collectively, knockdown of EDA2R exerted anti-apoptotic and antioxidant effects against I/R injury in vivo and in vitro by suppressing the NF-κB signaling pathway.

    Download PDF (12202K)
  • Takaharu Sone, Motohiro Komaki, Tadashi Sankai, Hiroko Hiramine, Kiyok ...
    2024 Volume 73 Issue 4 Pages 390-398
    Published: 2024
    Released on J-STAGE: October 23, 2024
    Advance online publication: May 30, 2024
    JOURNAL OPEN ACCESS
    Supplementary material

    The study aimed to evaluate the periodontal disease status in different age groups and clarify the relationship between aging and the severity of periodontal disease. The test animals were cynomolgus monkeys that were born and raised at Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition. The participants were divided into three groups: young (5–10 years old), middle (10–19 years old), and old (≥20 years old). The Plaque Index (PLI), Gingival Index (GI), Probing pocket depth (PPD), and Bleeding on probing (BOP) were used for the periodontal examination. Representative teeth were also examined. Polymerase chain reaction (PCR) was used to identify Porphyromonas macacae in dental plaque. Multiple comparisons and regression analyses were used to analyze the relationship between each age group and each oral examination index. Statistically significant differences were found between the age groups and periodontal examination index. Multiple regression analysis revealed that age was strongly correlated with each oral examination index. Based on these results, oral examinations of cynomolgus monkeys kept in the same environment confirmed an association between aging and periodontal disease severity. Monkeys at this facility are expected to serve as new experimental models for elucidating the mechanisms underlying the progression of age-related periodontal disease.

    Download PDF (1437K)
  • Daniela Romina Montagna, María Florencia Todero, Gabriela Cintia Postm ...
    2024 Volume 73 Issue 4 Pages 399-411
    Published: 2024
    Released on J-STAGE: October 23, 2024
    Advance online publication: August 03, 2024
    JOURNAL OPEN ACCESS
    Supplementary material

    Histopathological features of hepatocellular carcinoma (HCC) induced by diethylnitrosamine (DEN) in mice display strong similarities with those seen in humans, including the higher tumor prevalence in males than in females. Previous studies have demonstrated that continual production of the pro-inflammatory IL-6 by Kupffer cells is involved in the initiation and progression of DEN-induced HCC and that estrogen-mediated reduction of IL-6 secretion would decrease its incidence in females. Given the predominant utilization of male mice in hepatic carcinogenesis research, the objective of this study was to examine histopathological and immunological parameters in the DEN-induced liver carcinogenesis model in female C3H mice. We observed a significant prevalence of hepatocellular hyperplasias and adenomas alongside a minimal infiltration of inflammatory cells and a scarcity of senescent areas in females. Further, a low expression of immunosuppression markers is observed in females − such as neutrophil/lymphocyte ratio, PD-1 expression in CD8 T cells, and PD-L1 in myeloid cells − compared to males. Comparative studies between susceptible and resistant hosts to chemical carcinogenesis may help to unveil novel therapeutic strategies against cancer.

    Download PDF (3273K)
  • Tomoki Bo, Naoki Fukuda, Junko Ozaki, Ayumi Inoue, Kiyoaki Katahira, T ...
    2024 Volume 73 Issue 4 Pages 412-420
    Published: 2024
    Released on J-STAGE: October 23, 2024
    Advance online publication: May 30, 2024
    JOURNAL OPEN ACCESS
    Supplementary material

    Rats were the first mammals to be domesticated for scientific research, and abundant physiological data are available on them. Rats are expected to continue to play an important role as experimental animals, especially with advancements such as CRISPR/Cas9 technology. Environmental enrichment aims to promote species-specific behaviors and psychological well-being. In the present study, we designed a double-decker (DD) cage, which utilizes two stacked plastic cages for rat enrichment, and investigated the influence of housing in the DD cage on rat mating behavior. The results indicated that mount frequency, total mount counts, and total ejaculation latency were significantly lower in the DD cages than in the single-decker (SD) cages. Notably, in the DD cages, the body weight loss of male rats after mating behavior was lower than that observed in the SD cage. Water consumption per day during mating behavior was also significantly lower in the DD cages, although no significant differences were observed in daily food intake during mating behavior. In addition, reproductive performance, including pregnancy rate and birth rate, did not change in the DD cages. In summary, our study demonstrated that DD cages reduce mount frequency and ejaculation latency during rat mating, resulting in decreased water consumption and weight loss in male rats. Therefore, housing in DD cages may serve as a beneficial enrichment for rats.

    Download PDF (1590K)
  • Dan Li, Le Wang, Shufeng Shi, Xiaofeng Deng, Xuehan Zeng, Yunong Li, S ...
    2024 Volume 73 Issue 4 Pages 421-432
    Published: 2024
    Released on J-STAGE: October 23, 2024
    Advance online publication: June 07, 2024
    JOURNAL OPEN ACCESS

    Acupuncture has obvious therapeutic effect on intracerebral hemorrhage (ICH). miR-34a-5p regulated by acupuncture was found to attenuate neurological deficits in ICH. However, the underlying mechanisms are unclear. Ubiquitin-like 4A (UBL4A) has not been studied in ICH. SD rats were injected with autologous blood to induce ICH and treated with Baihui-penetrating-Qubin acupuncture. Acupuncture resulted in an increase in forelimb placing test scores, and a decrease in corner test scores and brain water content of ICH rats. Histopathological examination showed that acupuncture inhibited ICH-induced inflammation, decreased damaged neurons and increased UBL4A expression. UBL4A overexpression increased cell viability, inhibited apoptosis, reduced reactive oxygen species (ROS) level and increased manganese superoxide dismutase (MnSOD) activity, mitochondrial membrane potential and mtDNA level in rat embryonic primary cortical neurons. miR-34a-5p knockdown increased UBL4A expression, apoptosis rate and ROS level in hemin-treated neurons. Dual luciferase assays showed that miR-34a-5p bound to UBL4A. Apoptotic cells and ROS level were increased in hemin-treated neurons with UBL4A and miR-34a-5p knockdown. We firstly demonstrate the inhibitory effect of UBL4A on neuronal apoptosis, and the regulation relationship between UBL4A and miR-34a-5p. This study provides a new candidate target for ICH treatment and more basis for elucidating the molecular mechanism of acupuncture. In the future, we will conduct a deeper exploration of the effects of UBL4A on ICH.

    Download PDF (7096K)
  • Nurinee Dolrahman, Wachiryah Thong-asa
    2024 Volume 73 Issue 4 Pages 433-445
    Published: 2024
    Released on J-STAGE: October 23, 2024
    Advance online publication: June 28, 2024
    JOURNAL OPEN ACCESS

    The present study investigated the neural health benefit of beta-sitosterol (BSS) against trimethyltin (TMT)-induced neurodegeneration in mice. Forty male Institute of Cancer Research (ICR) mice were randomly divided into Sham-veh, TMT-veh, TMT-BSS50, and TMT-BSS100. A one-time intraperitoneal injection of 2.6 mg/kg of TMT was given to mice in TMT groups. Vehicle (veh), BSS 50 mg/kg or BSS 100 mg/kg were orally given for 2 weeks. Spatial learning and memory were evaluated. Brain oxidative status, hippocampal neuropathology, and reactive astrocytes were done. White matter pathology was also evaluated. The results indicated the massy effect of TMT on induced motor ability and spatial memory deficits in accordance with increased neuronal degeneration in Cornus ammonis (CA) 1, CA3, and dentate gyrus (DG) and internal capsule white matter damage. TMT also induced the reduction of reactive astrocytes in CA1 and DG. Brain’s catalase activity was significantly reduced by TMT, but not in mice with BSS treatments. Both doses of BSS treatment exhibited improvement in motor ability and spatial memory deficits in accordance with the activation of reactive astrocytes in CA1, CA3, and DG. However, they successfully prevented the increase of neuronal degeneration in CA1 found only with the BSS dose of 100 mg/kg, and it was indicated as the effective dose for neuroprotection in the vulnerable brain area. This study demonstrated mitigative effects of BSS against motor ability and memory deficits with neural health benefits, including a protective effect against CA1 neurodegeneration and a nurturing effect on hippocampal reactive astrocytes.

    Download PDF (3708K)
  • Peng Lian, Zhirong Huan, Yan Wang, Hao Yao, Shuguang Han, Xin Ge
    2024 Volume 73 Issue 4 Pages 446-457
    Published: 2024
    Released on J-STAGE: October 23, 2024
    Advance online publication: July 02, 2024
    JOURNAL OPEN ACCESS
    Supplementary material

    Acute lung injury (ALI) is a common complication after hemorrhagic shock (HS), which is associated with HS-induced inflammatory response, oxidative stress, and cell apoptosis. This study aimed to investigate the therapeutic efficacy of 8-Gingerol, a constituent extracted from ginger, on ALI after HS in rats. We established a fixed press hemorrhage model in SD rats, in which the HS rats were administered 15 or 30 mg/kg of 8-Gingerol by intraperitoneal injection before fluid resuscitation. Hematoxylin and eosin (H&E) and TUNEL staining were performed to evaluate histopathological changes and cell apoptosis in lung tissues, respectively. Quantitative reverse transcription PCR and western blot were used to measure gene and protein expression. Pro-inflammatory cytokines were detected by ELISA kits. Immunofluorescence of myeloperoxidase was used to evaluate neutrophil infiltration. 8-Gingerol reduced pulmonary edema, alveolar wall thickness, and cell apoptosis in lung tissues of HS rats. Regarding inflammatory responses, 8-Gingerol attenuated neutrophil infiltration in lung tissues, reduced pro-inflammatory cytokines in lung tissues and bronchoalveolar lavage fluid, and decreased the levels of NLR family, pyrin domain containing 3 (NLRP3), PYD and CARD domain containing (ASC), and Cleaved-Caspase 1 (Asp296), p20 (Cleaved Caspase 1) in lung tissues. Additionally, 8-Gingerol ameliorated oxidative stress in lung tissues as evidenced by increased antioxidant indicators (SOD and GSH) and decreased production of malondialdehyde (MDA) and reactive oxygen species (ROS). The therapeutic effects of 8-Gingerol were associated with the regulation of mitogen-activated protein kinase (MAPK) and Nrf2/HO-1 pathways. These results support 8-Gingerol as a promising drug for the treatment of HS-induced ALI.

    Download PDF (13986K)
  • Masanori A. Murayama
    2024 Volume 73 Issue 4 Pages 458-467
    Published: 2024
    Released on J-STAGE: October 23, 2024
    Advance online publication: June 29, 2024
    JOURNAL OPEN ACCESS

    The complement active product, C3a, and the receptor C3aR comprise an axis that exerts various biological functions, such as protection against infection. C3a is highly expressed in the inflamed skin and blood from patients with psoriasiform dermatitis. However, the role of the C3a/C3aR axis in psoriasiform dermatitis remains unclear because conflicting results using C3−/− mice have been published. In this study, to elucidate the contribution of commensal microbiota in C3−/− and wild-type (WT) mice were subjected to imiquimod-induced psoriasiform dermatitis under different housing conditions. C3−/− mice showed increased epidermal thickness and keratinocyte proliferation markers in the inflamed ear compared to WT mice upon treatment with IMQ. These inflamed phenotypes were observed in both cohoused and separately housed conditions, and antibiotic treatment did not abolish the aggravation of IMQ-induced psoriasiform dermatitis in C3−/− mice. These results suggested that the difference of commensal microbiota is not important for the C3-involved psoriasiform dermatitis. Keratinocyte hyperproliferation is a major feature of the inflamed skin in patients with psoriasiform dermatitis. In vitro experiments showed that C3a and C3aR agonists inhibited keratinocyte proliferation, which was abolished by introduction of a C3aR antagonist. Collectively, these results suggest that the C3a/C3aR axis plays a critical role in psoriasiform dermatitis development by inhibiting keratinocyte proliferation, regardless of the regulation of the commensal microbiota.

    Download PDF (3688K)
feedback
Top