Experimental Animals
Online ISSN : 1881-7122
Print ISSN : 1341-1357
ISSN-L : 0007-5124
Original
Ginsenoside Rb1 improves cardiac function and remodeling in heart failure
Xian ZhengShuai WangXiaoming ZouYating JingRonglai YangSiqi LiFengrong Wang
Author information
JOURNAL OPEN ACCESS

2017 Volume 66 Issue 3 Pages 217-228

Details
Abstract

We investigated the effect of ginsenoside Rb1 on cardiac function and remodeling in heart failure (HF). Four weeks after HF induction, the rats were administrated with ginsenoside Rb1 (35 and 70 mg/kg) and losartan (4.5 mg/kg) for 8 weeks. Losartan was used as a positive control. Cardiac function was assessed by measuring hemodynamic parameters. Histological changes were analyzed by HE and Masson’s trichrome staining. Cardiac hypertrophy, fibrosis, mitochondrial membrane potential and glucose transporter type 4 (GLUT4) levels were evaluated. In the present study, high dose of (H−) ginsenoside Rb1 decreased heart rate, improved cardiac function and alleviated histological changes induced by HF. H-ginsenoside Rb1 attenuated cardiac hypertrophy and myocardial fibrosis by decreasing left ventricular (LV) weight/heart weight ratio and cardiomyocyte cross-sectional area and reducing the levels of atrial natriuretic factor (ANF), β-myosin heavy chain (β-MHC), periostin, collagen I, Angiotensin II (Ang II), Angiotensin converting enzyme (ACE) and Ang II type 1 (AT1) receptor. Moreover, H-ginsenoside Rb1 decreased mitochondrial membrane potential and enhanced the translocation of GLUT4 to plasma membrane. The TGF-β1/Smad and ERK signaling pathways were inhibited and the Akt pathway was activated. These findings suggest that ginsenoside Rb1 might restore cardiac/mitochondrial function, increase glucose uptake and protect against cardiac remodeling via the TGF-β1/Smad, ERK and Akt signaling pathways.

Content from these authors
© 2017 Japanese Association for Laboratory Animal Science

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top