Experimental Animals
Online ISSN : 1881-7122
Print ISSN : 1341-1357
ISSN-L : 0007-5124
Original
Pharmacological properties of various anesthetic protocols in 10-day-old neonatal rats
Atsushi TsukamotoYui KonishiTakako KawakamiChiharu KoibuchiReiichiro SatoEiichi KanaiTomo Inomata
Author information
JOURNAL FREE ACCESS

2017 Volume 66 Issue 4 Pages 397-404

Details
Abstract

In general, the anesthesia in neonates involves high risk. Although hypothermic anesthesia is recommended in rats up to the age of 7 days, neonatal anesthesia for later periods has not been standardized. The present study investigated the pharmacological properties of conventional anesthetic protocols in 10-day-old SD rats. The rats were anesthetized with four anesthetics: a combination of ketamine and xylazine (K/X); a combination of medetomidine, midazolam, and butorphanol (M/M/B); isoflurane; and sevoflurane. Anesthetic depth was scored by reflex response to noxious stimuli. Induction and recovery times were recorded. Vital signs and mortality rate were evaluated for safety assessment. All rats died after administration of K/X at a dose of 60/6 mg/kg, whereas K/X at 40/4 mg/kg resulted in insufficient anesthetic depth, indicating inappropriate for neonatal anesthesia. Although M/M/B at the adult rat dose (0.15/2/2.5 mg/kg) did not provide surgical anesthetic depth, the mouse dose (0.3/4/5 mg/kg) showed sufficient anesthetic depth with relatively stable vital signs. Isoflurane required a long induction period, and caused remarkable respiratory depression and hypothermia, resulted in a 25% mortality rate. In contrast, sevoflurane provided consistent surgical anesthetic depth with rapid induction. Although respiratory rate decrease was markedly observed, all rats survived. Among the anesthetic protocols investigated in the present study, sevoflurane and M/M/B at the mouse dose were recommended for the neonatal anesthesia. Compared with adult rats, the required dose of both anesthetics in neonates was higher, possibly associated with their lower anesthetic sensitivity.

Content from these authors
© 2017 Japanese Association for Laboratory Animal Science
Previous article Next article
feedback
Top