Experimental Animals
Online ISSN : 1881-7122
Print ISSN : 1341-1357
ISSN-L : 0007-5124
Original
Downregulation of interferon-induced protein with tetratricopeptide repeats 3 relieves the inflammatory response and myocardial fibrosis of mice with myocardial infarction and improves their cardiac function
Jianhua SunQi ZhangXiaokun LiuXiaoming Shang
Author information
JOURNAL OPEN ACCESS
Supplementary material

2021 Volume 70 Issue 4 Pages 522-531

Details
Abstract

Myocardial infarction (MI) is a common cardiovascular disease with high morbidity and mortality. In this study, we explored the role of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in MI. MI was induced by ligation of the left anterior descending coronary artery. Lentivirus-mediated RNA interference of IFIT3 expression was performed by tail vein injection 72 h before MI modeling. Cardiac injury indexes and inflammatory response were examined 3 days after MI. Cardiac function indexes, infarct size, and cardiac fibrosis were assessed 4 weeks after MI. IFIT3 expression was upregulated in myocardial tissues at both 3 days and 4 weeks after MI. Knockdown of IFIT3 significantly relieved the myocardial injury, as evidenced by the decrease in serum levels of cTnI and CK-MB. In addition, IFIT3 knockdown significantly reduced the number of CD68+ macrophages and the levels of interleukin-1β, interleukin-6, and tumor necrosis factor-α, indicating that the inflammatory response was relieved. Moreover, IFIT3 silencing also significantly improved cardiac function and reduced infarct size, myocardial fibrosis, and collagen content in mice with MI. Mechanically, the present study showed that the activation of the mitogen-activated protein kinase (MAPK) pathway was observed in myocardial tissues of MI mice, which was blocked by IFIT3 knockdown, as indicated by the decreased phosphorylation of JNK, p-38, and ERK. Collectively, our results revealed the role of IFIT3 in the inflammatory response and myocardial fibrosis after MI, indicating that IFIT3 might be a potential target for MI treatment.

Content from these authors
© ©2021Japanese Association for Laboratory Animal Science

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top