2025 Volume 74 Issue 2 Pages 132-142
The Adriamycin-induced nephropathy (AN) model plays a crucial role in advancing our understanding of and research on chronic kidney disease (CKD). This review outlines methodologies for generating AN models in mice and rats, discusses their pathophysiologic and molecular characteristics, highlights their advantages and limitations, describes therapeutic interventions that have been evaluated in these models, and presents future research perspectives. The AN model replicates key features observed in human CKD, such as proteinuria, podocyte injury, glomerulosclerosis, and tubulointerstitial fibrosis. Notably, genetic factors significantly influence the onset and severity of AN, with mutations in the Prkdc gene linked to nephrotoxicity and systemic toxicity. To evaluate therapeutic interventions for CKD, agents such as ACE inhibitors, corticosteroids, and SGLT2 inhibitors have been tested in the AN model, demonstrating promising renoprotective effects. However, the systemic toxicity of Adriamycin and variability across models pose limitations, highlighting the need for caution when translating findings to human CKD. Future advancements in genetic engineering and the application of CRISPR-Cas9 technology are expected to improve the fidelity of AN models to human disease. Additionally, discovery of biomarkers by using the AN model enables us to improve early diagnosis. These efforts are anticipated to deepen our understanding of CKD pathophysiology and contribute to developing more effective diagnostic tools and targeted therapies.