Experimental Animals
Online ISSN : 1881-7122
Print ISSN : 1341-1357
ISSN-L : 0007-5124
Danshen attenuates cartilage injuries in osteoarthritis in vivo and in vitro by activating JAK2/STAT3 and AKT pathways
Xilin XUHang LVXiaodong LIHui SUXiaofeng ZHANGJun YANG
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: 17-0062


Articular cartilage degradation is a main feature of osteoarthritis (OA). The effects of Danshen, a traditional Chinese herb, in mitigating cartilage damage have been reported before. This study was conducted to investigate the effects of Danshen on cartilage injuries in OA. Rabbit OA models were established by surgical destabilization of the medial meniscus and the anterior and posterior cruciate ligaments in the left knee joint. Injection of Danshen into the articular cavity attenuated OA cartilage destruction in vivo. The levels of phosphorylated Janus kinase 2 (JAK2) and phosphorylated signal transducer and activator of transcription 3 (STAT3) were decreased in osteoarthritic cartilage, while they were rescued upon Danshen treatment. Furthermore, chondrocytes isolated from normal rabbit cartilage were exposed to 2 mM sodium nitroprusside (SNP) to establish an OA model in vitro. We found that the oxidative stress and chondrocyte apoptosis induced by SNP were suppressed by Danshen. The phosphorylation levels of JAK2 and STAT3 were decreased in response to SNP treatment, whereas they were rescued by Danshen. Additionally, AG490, a specific JAK2 inhibitor, counteracted the anti-apoptotic effect of Danshen. The phosphorylation level of protein kinase B (AKT) was also altered in response to SNP and reversed by Danshen. The anti-apoptotic effect of Danshen was counteracted by AKT pathway inhibitor LY194002. Taken together, Danshen attenuates OA cartilage destruction by regulating the JAK2/STAT3 and AKT signaling pathways.

Information related to the author
© 2017 Japanese Association for Laboratory Animal Science