Experimental Animals
Online ISSN : 1881-7122
Print ISSN : 1341-1357
ISSN-L : 0007-5124

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Development of a quantitative method for evaluating small intestinal motility using ultrasonography in mice
Kazuhisa KISHINoriyuki KAJIMari ENDOYoshiharu TSURUTetsuro OIKAWAMasatoshi HORI
著者情報
ジャーナル フリー 早期公開
電子付録

論文ID: 19-0030

この記事には本公開記事があります。
詳細
抄録

Upper gastrointestinal (GI) motility is affected by various drugs and diseases. However, changes in upper GI motility during these conditions are not well understood, as there are few quantitative in vivo methods that assess small intestinal motility in mice. Ultrasonography is a noninvasive method for imaging and evaluating the condition of the abdominal organs. The aim of the present study was to establish a novel method for evaluating small intestinal motility by using ultrasonography in mice. We measured GI motility with and without loperamide, an antidiarrheal medication, by intestinal transit using an orally administered dye, a 13C-octanoic acid breath test, and ultrasonography. Locomotion activity of the duodenal wall was used for quantifying the GI motility observed via ultrasonography. Our results showed that upper GI transit was significantly delayed by loperamide. The 13C-octanoic acid breath test revealed decreased gastric emptying in loperamide-treated mice. Through ultrasonography, large peristaltic movements were observed in the duodenum of the control mice. In contrast, after treatment with loperamide, these peristaltic movements were suppressed, and the duodenal lumen was enlarged, suggesting decreased duodenal motility. In accordance with these results, quantifiable locomotion activity was also significantly decreased. In conclusion, ultrasonography is an effective in vivo method to quantify small intestinal motility in mice.

著者関連情報
© 2019 Japanese Association for Laboratory Animal Science

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top