Experimental Animals
Online ISSN : 1881-7122
Print ISSN : 1341-1357
ISSN-L : 0007-5124

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Time course of histopathology of bleomycin-induced pulmonary fibrosis using an intratracheal sprayer in mice
Hideyuki KOBAYASHIAyami TACHISumihiko HAGITA
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: 23-0048

この記事には本公開記事があります。
詳細
抄録

Idiopathic pulmonary fibrosis (IPF) is a poor prognosis disease that affects approximately 5 million people worldwide, and the detailed mechanisms underlying the pathogenesis of IPF remain unclear. Bleomycin-induced pulmonary fibrosis has been widely used as a representative animal model of IPF that induces fibrosis in lung tissue. The lungs of rodent consist of five lobes and each bronchus enters each lobe of the lung at a different bifurcation angle, path length, and diameter. The method of administration of bleomycin is considered as important thing to establish appropriate animal models. We conducted a time-dependent histopathological study to examine how pulmonary fibrosis develops in each lung lobe when bleomycin is intratracheally sprayed in ICR mice. And we then explored the suitable points for evaluation of anti-fibrotic agents in this model. As a result, we found that homogeneous fibrosis was induced in the 5 lobes of the lungs following initial inflammation. The expression of TGF-β1 and pSmad2 was observed from Day 1, and their positivity increased until Day 21. In conclusion, we have observed a detailed time course of histological changes in bleomycin-induced pulmonary fibrosis in ICR mice using the aerosolization technique. We found that our protocol can induce a highly homogeneous lesion in the lung and that the most suitable time point to assess anti-fibrotic agents is 14 days after treatment in this model.

著者関連情報
© 2023 Japanese Association for Laboratory Animal Science

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top