Genes & Genetic Systems
Online ISSN : 1880-5779
Print ISSN : 1341-7568
ISSN-L : 1341-7568
Full papers
A comparison of interval mapping procedures including the QTL-cluster mapping
Hirokazu MatsudaHiroaki Iwaisaki
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2005 Volume 80 Issue 1 Pages 71-77

Details
Abstract
Using the deterministic sampling, patterns of the log-likelihood surfaces expected in some interval mapping procedures for estimating the position of, and the effect for, QTL(s) were investigated for the situations where a single QTL or closely linked QTLs are contained in a chromosome segment bracketed with two markers. The mapping procedures compared were the conventional, likelihood-based interval mapping (IM), the regression interval mapping (RIM), and the QTL-cluster mapping (CM) in which the conditional probabilities of transmission of the whole segment marked by the flanking markers were taken into consideration. The half-sib design was used here, and several cases of the true genetic model were considered, differing in the number of QTLs contained in the marker interval, the linkage phase for the sire, and the magnitude of the QTL(s) effect. For the true genetic models where a single QTL or closely linked QTLs being in coupling phase are contained in the interval, with (R)IM, clear global maxima of the log-likelihood were observed within the range of the marker interval. It was shown that the estimates of the QTL(s) effect at the marked segment level are expected to be unbiased. On the other hand, in a setting where the linkage phase for the linked QTLs located in the interval was different from coupling and repulsion, there was found a ridge along the interval for the log-likelihood surface with (R)IM, indicating the dependency between the estimates of the position of, and the effect for, the putative QTL. For this case, it was found that the position of the putative QTL could be estimated as that of one of the flanking markers, and the estimate of the QTL effect be biased. In contrast, it was revealed that CM is expected to provide the unbiased estimate of the QTL(s)-effect at the segment level for any case of the true genetic models considered here. If the aim is for marker-assisted selection rather than mapping closely linked QTLs individually, then the CM approach is considered to be useful.
Content from these authors
© 2005 by The Genetics Society of Japan
Previous article Next article
feedback
Top