Genes & Genetic Systems
Online ISSN : 1880-5779
Print ISSN : 1341-7568
ISSN-L : 1341-7568
Full papers
Variations in a hotspot region of chloroplast DNAs among common wheat and Aegilops revealed by nucleotide sequence analysis
Chang-Hong GuoToru Terachi
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2005 Volume 80 Issue 4 Pages 277-285

Details
Abstract

The second largest BamHI fragment (B2) of the chloroplast DNA in Triticum (wheat) and Aegilops contains a highly variable region (a hotspot), resulting in four types of B2 of different size, i.e. B2l (10.5kb), B2m (10.2kb), B2 (9.6kb) and B2s (9.4kb). In order to gain a better understanding of the molecular nature of the variations in length and explain unexpected identity among B2 of Ae. ovata, Ae. speltoides and common wheat (T. aestivum), the nucleotide sequence between a stop codon of rbcL and a HindIII site in cemA in the hotspot was determined for Ae. ovata, Ae. speltoides, Ae. caudata and Ae. mutica. The total number of nucleotides in the region was 2808, 2810, 3302, and 3594 bp, for Ae. speltoides, Ae. ovata, Ae. caudata and Ae. mutica, respectively, and the sequences were compared with the corresponding ones of Ae. crassa 4x, T. aestivum and Ae. squarrosa. Compared with the largest B2l fragment of Ae. mutica, a 791bp and a 793 bp deletion were found in Ae. speltoides and Ae. ovata, respectively, and the possible site of deletion in the two species is the same as that of T. aestivum. However, a deleted segment in Ae. ovata is 2 bp longer than that of Ae. speltoides (and T. aestivum), demonstrating that recurrent deletions had occurred in the chloroplast genomes of both species. Comparison of the sequences from Ae. caudata and Ae. crassa 4x with that of Ae. mutica revealed a 289 bp and a 61 bp deletion at the same site in Ae. caudata and Ae. crassa 4x, respectively. Sequence comparison using wild Aegilops plants showed that the large length variations in a hotspot are fixed to each species. A considerable number of polymorphisms are observed in a loop in the 3’ of rbcL. The study reveals the relative importance of the large and small indels and minute inversions to account for variations in the chloroplast genomes among closely related species.

Content from these authors
© 2005 by The Genetics Society of Japan
Previous article Next article
feedback
Top