2023 Volume 98 Issue 6 Pages 353-360
We report the complete organellar genome sequences of an ultrasmall green alga, Medakamo hakoo strain M-hakoo 311, which has the smallest known nuclear genome in freshwater green algae. Medakamo hakoo has 90.8-kb chloroplast and 36.5-kb mitochondrial genomes containing 80 and 33 putative protein-coding genes, respectively. The mitochondrial genome is the smallest in the Trebouxiophyceae algae studied so far. The GC content of the nuclear genome is 73%, but those of chloroplast and mitochondrial genomes are 41% and 35%, respectively. Codon usages in the organellar genomes have a different tendency from that in the nuclear genome. The organellar genomes have unique characteristics, such as the biased encoding of mitochondrial genes on a single strand and the absence of operon structures in chloroplast ribosomal genes. Medakamo hakoo will be helpful for understanding the evolution of the organellar genome and the regulation of gene expression in chloroplasts and mitochondria.
The sequencing of genomes across a diverse range of organisms has yielded a wealth of knowledge, shedding light not only on biodiversity but also on the existence of universal genes that are shared among all living entities. These insights will be updated as new species are discovered; therefore, the exploration of novel species is an ongoing and crucial endeavor. In particular, microalgae remain largely unexplored and are likely to contain new species that are important for evolutionary studies and industrial applications. We found an ultrasmall green alga, Medakamo hakoo strain M-hakoo 311, in a freshwater aquarium (Kuroiwa et al., 2015, 2016; Kato et al., 2023). Evolutionary analyses with ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit genes suggest that M. hakoo belongs to a new genus within the class Trebouxiophyceae (Kato et al., 2023). The nuclear genome comprises 15.8 Mbp and 7,629 genes, and is among the smallest known genomes in the Viridiplantae.
Whole-genome sequencing was performed with the PacBio RS II system (Pacific Biosciences, Menlo Park, CA, USA), and the sequence reads were assembled de novo with the RS HGAP Assemble.3 program run by SMRT Analysis software 2.3.0 (Pacific Biosciences). Genes encoded by the chloroplast/mitochondrial genomes were annotated using GeSeq employing default parameters (Tillich et al., 2017) with the following Trebouxiophyceae organellar genomes as references, since M. hakoo belongs to Trebouxiophyceae (Kato et al., 2023): Chlorella vulgaris (NC_001865/NC_045362), Coccomyxa subellipsoidea C-169 (NC_015084/NC_015316) and Botryococcus braunii (NC_025545/NC_027722). rRNA was predicted using StructRNAfinder (Arias-Carrasco et al., 2018) and RNAweasel (Lang et al., 2007). The annotations were corrected using DNADynamo (Blue Tractor Software, Llanfairfechan, UK).
We obtained two contigs representing the organellar genomes with circular sequences (Fig. 1A and 1B). The chloroplast genome (cpDNA, Fig. 1A) was 90,934 bp in length, displaying a GC content of 41.4%. We annotated 112 genes (Table 1), including 31 photosynthesis-related genes (components of photosystem I and II, the cytochrome b6f complex, and ATP synthase subunits) and 29 tRNA and two rRNA genes. The cpDNA of M. hakoo is slightly smaller than that of its closest relative, Choricystis parasitica (Lemieux et al., 2014), which is 94,206 bp. Generally, cpDNA of green algae shows a quadripartite structure, which contains two copies of inverted repeat sequences (IRs) separated by unequal single-copy sequences, and the IRs always include the ribosomal RNA genes (Green, 2011). However, the complete cpDNA of M. hakoo lacks the quadripartite structure, similar to C. parasitica, because cpDNA of M. hakoo harbors only a single copy of the rrnL (23S ribosomal RNA) and rrnS (16S ribosomal RNA) genes (Fig. 1A). Despite most genes being shared between M. hakoo and C. parasitica, the cpDNAs of these two algae diverge regarding gene order. As expected, M. hakoo cpDNA exhibited a relatively small size and high gene density (Table 1). Excluding non-photosynthetic and parasitic algae such as Helicosporidium and Prototheca (de Koning and Keeling, 2006; Suzuki et al., 2018), the cpDNA of M. hakoo is the second smallest after Coccomyxa sp. strain SUA001 (MF805805) in Trebouxiophyceae (Table 1).
Species | Strain | Accession | Genome size (bp) | Gene number | Coding region (%) | Note | Reference |
---|---|---|---|---|---|---|---|
Chlorellales | |||||||
Auxenochlorella protothecoides | KC631634 | 84,576 | 109 | 80.29 | https://www.ncbi.nlm.nih.gov/nuccore/KC631634.1 | ||
Auxenochlorella protothecoides | UTEX 2341 | KY613608 | 84,577 | 106 | 83.68 | https://www.ncbi.nlm.nih.gov/nuccore/KY613608.1 | |
Auxenochlorella pyrenoidosa | FACHB-5 | MN128434 | 107,442 | 115 | 66.86 | https://www.ncbi.nlm.nih.gov/nuccore/MN128434.1 | |
Chlorella heliozoae | KY629616 | 124,353 | 112 | 58.29 | Fan et al. (2017) | ||
Chlorella mirabilis | SAG 38.88 | KM462865 | 167,972 | 115 | 47.64 | Lemieux et al. (2014) | |
Chlorella sorokiniana | KJ397925 | 109,811 | 113 | 64.45 | Orsini et al. (2016) | ||
Chlorella sorokiniana | isolate 1230 | KJ742376 | 109,803 | 111 | 63.07 | https://www.ncbi.nlm.nih.gov/nuccore/KJ742376.1 | |
Chlorella sp. | ArM0029B | KF554427 | 119,989 | 115 | 59.52 | Jeong et al. (2014) | |
Chlorella sp. | ATCC 30562 | KY629617 | 124,881 | 112 | 57.96 | Fan et al. (2017) | |
Chlorella variabilis | HQ914635 | 124,579 | 115 | 57.14 | https://www.ncbi.nlm.nih.gov/nuccore/HQ914635.1 | ||
Chlorella variabilis | DT025 | MZ647689 | 118,106 | 111 | 59.91 | https://www.ncbi.nlm.nih.gov/nuccore/MZ647689 | |
Chlorella variabilis | NC64A | KP271969 | 124,793 | 113 | 58.28 | Orsini et al. (2016) | |
Chlorella vulgaris | MT577052 | 165,412 | 114 | 44.64 | Wen and Wan (2020) | ||
Chlorella vulgaris | MW900257 | 156,202 | 108 | 42.25 | https://www.ncbi.nlm.nih.gov/nuccore/MW900257.1 | ||
Chlorella vulgaris | NC_001865 | 150,613 | 210 | 62.39 | Wakasugi et al. (1997) | ||
Chlorella vulgaris | ITBBA3-12 | MT920676 | 168,369 | 104 | 34.99 | Han et al. (2021) | |
Chlorella vulgaris | NJ-7 | MK948100 | 154,201 | 115 | 47.84 | https://www.ncbi.nlm.nih.gov/nuccore/MK948100 | |
Chlorella vulgaris | UTEX 259 | MK948102 | 176,851 | 115 | 41.78 | https://www.ncbi.nlm.nih.gov/nuccore/MK948102 | |
Dicloster acuatus | SAG 41.98 | KM462885 | 169,201 | 128 | 49.81 | Lemieux et al. (2014) | |
Geminella minor | SAG 22.88 | KM462883 | 129,187 | 120 | 61.11 | Turmel et al. (2009) | |
Helicosporidium sp. | ex Simulium jonesii | DQ398104 | 37,454 | 54 | 95.18 | parasitic | de Koning and Keeling (2006) |
Marvania geminata | SAG 12.88 | KM462888 | 108,470 | 114 | 64.88 | Turmel et al. (2009) | |
Micractinium conductrix | KY629620 | 129,436 | 112 | 62.31 | Fan et al. (2017) | ||
Micractinium pusillum | CCAP 232/1 | MN649872 | 115,638 | 105 | 58.15 | https://www.ncbi.nlm.nih.gov/nuccore/MN649872.1 | |
Micractinium simplicissimum | OP448647 | 123,552 | 114 | 58.1 | https://www.ncbi.nlm.nih.gov/nuccore/OP448647 | ||
Micractinium singularis | MM0003 | MN894287 | 139,597 | 106 | 47.85 | ncbi.nlm.nih.gov/nuccore/MH983006.1 | |
Micractinium sp. | LBA 32 | MH983006 | 109,688 | 113 | 64.36 | https://www.ncbi.nlm.nih.gov/nuccore/MH983006.1 | |
Nannochloris desiccata | UTEX 2526 | OK569791 | 93,001 | 107 | 73.62 | Sanders et al. (2022) | |
Parachlorella kessleri | SAG 211-11g | FJ968741 | 123,994 | 126 | 64.8 | Turmel et al. (2009) | |
Picochlorum soloecismus | DOE 101 | MG552671 | 72,741 | 64 | 70.96 | Greshake Tzovaras et al. (2020) | |
Picochlorum sp. | BH-2019 | OQ942923 | 74,367 | 100 | 77.67 | Dahlin et al. (2019) | |
Planctonema lauterbornii | SAG 68.94 | KM462880 | 114,128 | 123 | 67.33 | Lemieux et al. (2014) | |
Prototheca cutis | AP018373 | 51,673 | 72 | 92.44 | parasitic | Suzuki et al. (2018) | |
Prototheca stagnorum | AP018372 | 48,188 | 52 | 84.54 | parasitic | Suzuki et al. (2018) | |
Pseudochloris wilhelmii | SAG 1.80 | KM462886 | 109,775 | 126 | 74.25 | Lemieux et al. (2014) | |
Microthamniales | |||||||
Fusochloris perforata | SAG 28.85 | KM462882 | 148,459 | 107 | 50.86 | Lemieux et al. (2014) | |
Microthamnion kuetzingianum | UTEX 318 | KM462876 | 158,609 | 107 | 45.89 | Lemieux et al. (2014) | |
Elliptochloris bilobata | CAUP H7103 | KM462887 | 134,677 | 115 | 58.45 | Lemieux et al. (2014) | |
Koliella corcontica | SAG 24.84 | KM462874 | 117,543 | 128 | 74.24 | Lemieux et al. (2014) | |
Koliella longiseta | UTEX 339 | KM462868 | 197,094 | 118 | 42.48 | Lemieux et al. (2014) | |
Prasiolopsis sp. | SAG 84.81 | KM462862 | 306,152 | 115 | 32.81 | Lemieux et al. (2014) | |
Stichococcus bacillaris | UTEX 176 | KM462864 | 116,952 | 115 | 83.68 | Lemieux et al. (2014) | |
Trebouxiales | |||||||
Botryococcus braunii | SAG 807-1 | KM462884 | 172,826 | 114 | 52.53 | Lemieux et al. (2014) | |
Ettlia pseudoalveolaris/ Parietochloris pseudoalveolaris | UTEX 975 | KM462869 | 126,694 | 125 | 66.18 | Lemieux et al. (2014) | |
Lobosphaera incisa | KM821265 | 156,028 | 111 | 49.97 | Tourasse et al. (2015) | ||
Lobosphaera incisa | SAG 2007 | KM462871 | 156,031 | 111 | 56.45 | Lemieux et al. (2014) | |
Myrmecia israelensis | UTEX 1181 | KM462861 | 146,596 | 112 | 52.59 | Lemieux et al. (2014) | |
Pabia signiensis/ Pseudochlorella signiensis | SAG 7.90 | KM462866 | 236,463 | 118 | 36.12 | Lemieux et al. (2014) | |
Symbiochloris handae | SAG 2150 | KM462860 | 289,394 | 116 | 36.08 | Lemieux et al. (2014) | |
Symbiochloris sp. | SG-2018 | ON645925 | 158,961 | 126 | 70.98 | https://www.ncbi.nlm.nih.gov/nuccore/ON645925.1 | |
Xylochloris irregularis | CAUP H7801 | KM462872 | 181,542 | 140 | 57.65 | Lemieux et al. (2014) | |
Trebouxiophyceae ordo incertae sedis | |||||||
Choricystis parasitica | SAG 17.98 | KM462878 | 94,206 | 111 | 79.12 | Lemieux et al. (2014) | |
Coccomyxa subellipsoidea | C-169 | HQ693844 | 175,731 | 115 | 44.94 | https://www.ncbi.nlm.nih.gov/nuccore/HQ693844.1 | |
Coccomyxa sp. | Obi | AP025008 | 177,965 | 243 | 66.43 | https://www.ncbi.nlm.nih.gov/nuccore/AP025008.1 | |
Coccomyxa sp. | SUA001 | MF805805 | 68,605 | 100 | 71.18 | https://www.ncbi.nlm.nih.gov/nuccore/MF805805 | |
Leptosira terrestris/ Pleurastrum terricola | UTEX 333 | EF506945 | 195,081 | 119 | 48.55 | de Cambiaire et al. (2007) | |
Paradoxia multiseta | SAG 18.84 | KM462879 | 183,394 | 125 | 51.23 | Lemieux et al. (2014) | |
Medakamo hakoo | M-hakoo 311 (=NIES-4000) | LC604816 | 90,934 | 112 | 81.93 | this study | |
Trebouxiophyceae sp. | MX-AZ01 | JX402620 | 149,707 | 115 | 54.15 | Servín-Garcidueñas and Martínez-Romero (2012) | |
Watanabeales | |||||||
Calidiella yingdensis | D201 | ON986222 | 132,956 | 108 | 58.53 | Liu et al. (2023) | |
Chloroidium sp. | KL-2023a clone 2023 | ON986219 | 239,655 | 113 | 37.65 | Liu et al. (2023) | |
Kalinella pachyderma | clone 2601 | ON986220 | 273,947 | 113 | 36.47 | Liu et al. (2023) | |
Massjukichlorella minus | clone BN2720 | ON986221 | 240,832 | 120 | 41.21 | Liu et al. (2023) | |
Phyllosiphon coccidium | clone S213 | ON986218 | 152,197 | 109 | 54.41 | Liu et al. (2023) | |
Polulichloris maxima | clone L123 | ON986224 | 165,748 | 111 | 49.66 | Liu et al. (2023) | |
Watanabea reniformis | SAG 211-9b | KM462863 | 201,425 | 118 | 45.68 | Lemieux et al. (2014) | |
Watanabea sichuanensis | H051 | ON986223 | 208,433 | 118 | 43.83 | Liu et al. (2023) |
Chloroplast genome data registered as a complete genome were collected from the NCBI database, from which the genome size, the number of genes and the coding region were obtained. Counting was automatically processed based on information in each accession, so there may be slight miscounting depending on the original data.
The mitochondrial genome (mtDNA) of M. hakoo was 36,544 bp and had a GC content of 35.2% (Fig. 1B). It is the smallest of the known Trebouxiophyceae mtDNAs and exhibits a notably high gene density (85.2%, Table 2). In general, changes in organellar genome size are known to correlate with the length of intergenic regions if the organelles keep their functions (Smith and Keeling, 2015). Consistent with this, the mtDNA of M. hakoo contains relatively short intergenic regions. The mtDNA comprises 59 genes (Table 2) including 25 tRNAs, three rRNAs, 18 respiratory chain complex genes, an ATP synthase gene, a subunit C gene of twin arginine translocation (tatC) and a homing endonuclease gene (LHE). Notably, almost all the genes were predicted to be transcribed from the same strand. This characteristic is also observed in Trebouxiales, including Trebouxiophyceae sp. MX-AZ01 (Servín-Garcidueñas and Martínez-Romero, 2012), Coccomyxa subellipsoidea C-169 (Smith et al., 2011) and Botryococcus braunii (Blifernez-Klassen et al., 2016; Martínez-Alberola et al., 2019). However, the group II introns of the trnH (gug) and trnW (cca) genes, which are conserved in these species (Martínez-Alberola et al., 2019), were not predicted in M. hakoo. Typically, in Trebouxiophyceae, the rpl10 gene is located next to rps19 (Martínez-Alberola et al., 2019), but M. hakoo had another ORF in this position that was not similar to other known genes.
Species | Strain | Accession | Genome size (bp) | Gene number | Coding region (%) | Note | Reference |
---|---|---|---|---|---|---|---|
Chlorellales | |||||||
Auxenochlorella protothecoides | KC843974 | 57,274 | 68 | 73.4 | https://www.ncbi.nlm.nih.gov/nuccore/KC843974 | ||
Auxenochlorella protothecoides | UTEX 2341 | KY681419 | 57,063 | 70 | 68.4 | https://www.ncbi.nlm.nih.gov/nuccore/KY681419 | |
Chlorella heliozoae | KY629615 | 62,477 | 61 | 63.1 | Fan et al. (2017) | ||
Chlorella ohadii | MT995630 | 52,560 | 60 | 61.8 | https://www.ncbi.nlm.nih.gov/nuccore/MT995630 | ||
Chlorella sorokiniana | isolate 1230 | KJ742377 | 52,528 | 61 | 64.1 | https://www.ncbi.nlm.nih.gov/nuccore/KJ742377 | |
Chlorella sp. | ArM0029B | KF554428 | 65,049 | 65 | 54.2 | Jeong et al. (2014) | |
Chlorella sp. | ATCC 30562 | KY629618 | 79,601 | 62 | 50.5 | Fan et al. (2017) | |
Chlorella variabilis | NC64A | KP271968 | 78,500 | 62 | 50.0 | Orsini et al. (2016) | |
Chlorella vulgaris | NJ-7 | MK948101 | 87,477 | 65 | 42.6 | https://www.ncbi.nlm.nih.gov/nuccore/MK948101 | |
Chlorella vulgaris | UTEX 259 | MK948103 | 98,062 | 67 | 40.0 | https://www.ncbi.nlm.nih.gov/nuccore/1778222418 | |
Chlorella vulgaris | ITBBA3-12 | MT419367 | 88,754 | 33 | 30.2 | Hu et al. (2020) | |
Chlorella vulgaris | MW900258 | 84,368 | 64 | 42.8 | https://www.ncbi.nlm.nih.gov/nuccore/MW900258.1 | ||
Helicosporidium sp. | ex Simulium jonesi | GQ339576 | 49,343 | 66 | 75.7 | parasitic | Pombert and Keeling (2010) |
Micractinium conductrix | KY629619 | 74,708 | 62 | 51.6 | Fan et al. (2017) | ||
Micractinium pusillum | CCAP 232/1 | MN649871 | 70,061 | 58 | 46.1 | https://www.ncbi.nlm.nih.gov/nuccore/MN649871 | |
Micractinium singularis | MM0003 | MN894286 | 75,931 | 59 | 43.5 | Jo et al. (2020) | |
Micractinium sp. | LBA 32 | MH718999 | 77,435 | 63 | 53.6 | https://www.ncbi.nlm.nih.gov/nuccore/MH718999 | |
Micractinium variabile | KSF0031 | MT332838 | 65,047 | 62 | 47.5 | Kim et al. (2021) | |
Nannochloris desiccata | UTEX 2526 | OK569792 | 40,231 | 69 | 83.6 | Sanders et al. (2022) | |
Picochlorum soloecismus | DOE 101 | MG552670 | 38,672 | 32 | 62.3 | Gonzalez-Esquer et al. (2018) | |
Prototheca bovis | SAG 2021 | MF197534 | 39,222 | 61 | 76.9 | parasitic | Severgnini et al. (2018) |
Prototheca ciferrii | SAG 2063 | MF197533 | 38,164 | 59 | 73.7 | parasitic | Severgnini et al. (2018) |
Prototheca wickerhamii | NC_001613 | 55,328 | 63 | 70.6 | parasitic | Wolff et al. (1994) | |
Trebouxiales | |||||||
Botryococcus braunii | Showa | KR057902 | 84,583 | 66 | 54.3 | Zou and Bi (2016) | |
Lobosphaera incisa | SAG 2468 | KP902678 | 69,997 | 64 | 57.1 | Tourasse et al. (2015) | |
Symbiochloris sp. | SG-2018 | ON897766 | 59,508 | 58 | 57.8 | https://www.ncbi.nlm.nih.gov/nuccore/ON897766.1 | |
Trebouxia sp. | TR9 | MH917293 | 70,070 | 63 | 62.1 | Martínez-Alberola et al. (2019) | |
Trebouxia sp. | A1-2 | MN642622 | 99,907 | 78 | 43.9 | Greshake Tzovaras et al. (2020) | |
Trebouxiophyceae ordo incertae sedis | |||||||
Coccomyxa sp. | C-169 | HQ874522 | 65,497 | 60 | 59.1 | Smith et al. (2011) | |
Medakamo hakoo | M-hakoo 311 (=NIES-4000) | LC604817 | 36,544 | 59 | 85.2 | this study | |
Trebouxiophyceae sp. | MX-AZ01 | JX315601 | 74,423 | 67 | 68.2 | Servín-Garcidueñas and Martínez-Romero (2012) | |
Watanabeales | |||||||
Chloroidium sp. | UTEX 3077 | MN646686 | 90,774 | 54 | 50.7 | https://www.ncbi.nlm.nih.gov/nuccore/MN646686 | |
Jaagichlorella hainangensis | MN966687 | 54,084 | 52 | 58.3 | https://www.ncbi.nlm.nih.gov/nuccore/MN966687 | ||
Jaagichlorella roystonensis | MN934958 | 130,507 | 64 | 34.0 | Ma et al. (2020) |
Mitochondrial genome data registered as complete genomes were obtained from the NCBI database, from which the genome size, the number of genes and the coding region were obtained.
We then analyzed the codon usage of both chloroplasts and mitochondria (Table 3). There were 25 codons in chloroplasts and 27 in mitochondria with a relative synonymous codon usage (RSCU) exceeding 1, i.e., codons with higher usage frequencies than the theoretical expectation. All these codons in mitochondria and 23 out of 25 in chloroplasts ended in A or T nucleotides. The coding sequences of the cpDNA and mtDNA exhibited GC contents of 44.2% and 37.7%, respectively, closely matching the GC contents of their entire organellar genomes. However, the GC contents of the 3rd position (31.6% and 21.0% for cpDNA and mtDNA, respectively) were markedly lower, which is a unique characteristic of the organellar genomes of M. hakoo. We have already reported that the GC content of the nuclear genome of M. hakoo is exceptionally high, at 73%, and it has been pointed out that amino acids corresponding to codons with higher GC usage tend to be preferentially employed in protein synthesis (Kato et al., 2023). On the other hand, the alteration in amino acid composition due to such a bias could not be observed in the organelle genome. In addition, neither mitochondria nor chloroplasts necessarily have a high codon usage rate corresponding to tRNA encoded within their genomes.
Chloroplast genome | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Triplet | AA | Fraction | FPT | Number | RSCU | Triplet | AA | Fraction | FPT | Number | RSCU | Triplet | AA | Fraction | FPT | Number | RSCU | Triplet | AA | Fraction | FPT | Number | RSCU |
TTT | F | 0.61 | 33.0 | 738 | 1.21 | TCT | S | 0.24 | 14.3 | 320 | 1.44 | TAT | Y | 0.56 | 17.7 | 396 | 1.13 | TGT | C | 0.65 | 6.3 | 140 | 1.29 |
TTC | F | 0.39 | 21.5 | 480 | 0.79 | TCC | S | 0.04 | 2.6 | 58 | 0.26 | TAC | Y | 0.44 | 13.6 | 305 | 0.87 | TGC | C | 0.35 | 3.4 | 77 | 0.71 |
TTA | L | 0.37 | 38.3 | 856 | 2.23 | TCA | S | 0.29 | 17.0 | 381 | 1.71 | TAA | * | 0.81 | 2.9 | 64 | – | TGA | * | 0.04 | 0.1 | 3 | – |
TTG | L | 0.10 | 10.0 | 223 | 0.58 | TCG | S | 0.15 | 9.0 | 201 | 0.90 | TAG | * | 0.15 | 0.5 | 12 | – | TGG | W | 1.00 | 14.8 | 331 | 1.00 |
CTT | L | 0.31 | 31.8 | 712 | 1.85 | CCT | P | 0.31 | 15.8 | 354 | 1.24 | CAT | H | 0.46 | 9.6 | 215 | 0.92 | CGT | R | 0.59 | 36.3 | 811 | 3.51 |
CTC | L | 0.07 | 7.0 | 157 | 0.41 | CCC | P | 0.08 | 3.8 | 86 | 0.30 | CAC | H | 0.54 | 11.3 | 253 | 1.08 | CGC | R | 0.14 | 8.7 | 194 | 0.84 |
CTA | L | 0.09 | 9.1 | 204 | 0.53 | CCA | P | 0.45 | 23.1 | 516 | 1.81 | CAA | Q | 0.83 | 37.2 | 832 | 1.66 | CGA | R | 0.17 | 10.4 | 233 | 1.01 |
CTG | L | 0.07 | 6.9 | 154 | 0.40 | CCG | P | 0.16 | 8.2 | 183 | 0.64 | CAG | Q | 0.17 | 7.7 | 173 | 0.34 | CGG | R | 0.04 | 2.5 | 55 | 0.24 |
ATT | I | 0.69 | 41.8 | 936 | 2.06 | ACT | T | 0.31 | 18.2 | 408 | 1.25 | AAT | N | 0.48 | 17.5 | 392 | 0.96 | AGT | S | 0.20 | 11.8 | 264 | 1.19 |
ATC | I | 0.28 | 17.2 | 384 | 0.84 | ACC | T | 0.10 | 5.7 | 127 | 0.39 | AAC | N | 0.52 | 19.1 | 427 | 1.04 | AGC | S | 0.08 | 5.0 | 111 | 0.50 |
ATA | I | 0.03 | 2.0 | 45 | 0.10 | ACA | T | 0.40 | 23.2 | 518 | 1.59 | AAA | K | 0.80 | 41.7 | 933 | 1.60 | AGA | R | 0.05 | 3.0 | 68 | 0.29 |
ATG | M | 1.00 | 24.1 | 540 | 1.00 | ACG | T | 0.19 | 11.1 | 249 | 0.76 | AAG | K | 0.20 | 10.3 | 230 | 0.40 | AGG | R | 0.02 | 1.1 | 25 | 0.11 |
GTT | V | 0.47 | 32.7 | 732 | 1.90 | GCT | A | 0.40 | 31.3 | 701 | 1.60 | GAT | D | 0.66 | 28.5 | 638 | 1.32 | GGT | G | 0.57 | 40.0 | 895 | 2.29 |
GTC | V | 0.13 | 8.6 | 193 | 0.50 | GCC | A | 0.13 | 10.4 | 233 | 0.53 | GAC | D | 0.34 | 14.7 | 329 | 0.68 | GGC | G | 0.13 | 9.4 | 211 | 0.54 |
GTA | V | 0.24 | 16.6 | 372 | 0.96 | GCA | A | 0.28 | 21.9 | 490 | 1.12 | GAA | E | 0.75 | 39.6 | 885 | 1.51 | GGA | G | 0.16 | 11.4 | 255 | 0.65 |
GTG | V | 0.16 | 11.0 | 246 | 0.64 | GCG | A | 0.19 | 14.6 | 326 | 0.75 | GAG | E | 0.25 | 12.9 | 288 | 0.49 | GGG | G | 0.13 | 9.1 | 203 | 0.52 |
Mitochondrial genome | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Triplet | AA | Fraction | FPT | Number | RSCU | Triplet | AA | Fraction | FPT | Number | RSCU | Triplet | AA | Fraction | FPT | Number | RSCU | Triplet | AA | Fraction | FPT | Number | RSCU |
TTT | F | 0.70 | 49.5 | 420 | 1.39 | TCT | S | 0.28 | 19.9 | 169 | 1.67 | TAT | Y | 0.69 | 26.4 | 224 | 1.39 | TGT | C | 0.82 | 10.6 | 90 | 1.64 |
TTC | F | 0.30 | 21.7 | 184 | 0.61 | TCC | S | 0.02 | 1.7 | 14 | 0.14 | TAC | Y | 0.31 | 11.7 | 99 | 0.61 | TGC | C | 0.18 | 2.4 | 20 | 0.36 |
TTA | L | 0.55 | 68.9 | 584 | 3.33 | TCA | S | 0.31 | 22.2 | 188 | 1.86 | TAA | * | 0.94 | 3.7 | 31 | – | TGA | * | 0.06 | 0.2 | 2 | – |
TTG | L | 0.04 | 5.0 | 42 | 0.24 | TCG | S | 0.08 | 5.5 | 47 | 0.46 | TAG | * | 0.00 | 0.0 | 0 | – | TGG | W | 1.00 | 19.6 | 166 | 1.00 |
CTT | L | 0.27 | 33.5 | 284 | 1.62 | CCT | P | 0.38 | 15.9 | 135 | 1.51 | CAT | H | 0.56 | 11.8 | 100 | 1.11 | CGT | R | 0.48 | 21.9 | 186 | 2.89 |
CTC | L | 0.01 | 1.5 | 13 | 0.07 | CCC | P | 0.02 | 0.9 | 8 | 0.09 | CAC | H | 0.44 | 9.4 | 80 | 0.89 | CGC | R | 0.10 | 4.4 | 37 | 0.58 |
CTA | L | 0.09 | 11.6 | 98 | 0.56 | CCA | P | 0.49 | 20.6 | 175 | 1.96 | CAA | Q | 0.89 | 34.6 | 293 | 1.77 | CGA | R | 0.25 | 11.6 | 98 | 1.52 |
CTG | L | 0.03 | 3.8 | 32 | 0.18 | CCG | P | 0.11 | 4.6 | 39 | 0.44 | CAG | Q | 0.11 | 4.5 | 38 | 0.23 | CGG | R | 0.01 | 0.4 | 3 | 0.05 |
ATT | I | 0.73 | 53.4 | 453 | 2.20 | ACT | T | 0.42 | 22.9 | 194 | 1.68 | AAT | N | 0.66 | 22.5 | 191 | 1.32 | AGT | S | 0.26 | 18.9 | 160 | 1.58 |
ATC | I | 0.16 | 11.8 | 100 | 0.48 | ACC | T | 0.05 | 2.7 | 23 | 0.20 | AAC | N | 0.34 | 11.6 | 98 | 0.68 | AGC | S | 0.05 | 3.4 | 29 | 0.29 |
ATA | I | 0.11 | 7.8 | 66 | 0.32 | ACA | T | 0.44 | 23.9 | 203 | 1.76 | AAA | K | 0.78 | 40.0 | 339 | 1.57 | AGA | R | 0.15 | 6.8 | 58 | 0.90 |
ATG | M | 1.00 | 25.8 | 219 | 1.00 | ACG | T | 0.09 | 4.8 | 41 | 0.36 | AAG | K | 0.22 | 11.0 | 93 | 0.43 | AGG | R | 0.01 | 0.5 | 4 | 0.06 |
GTT | V | 0.55 | 39.3 | 333 | 2.21 | GCT | A | 0.48 | 33.5 | 284 | 1.94 | GAT | D | 0.78 | 24.7 | 209 | 1.57 | GGT | G | 0.30 | 18.5 | 157 | 1.18 |
GTC | V | 0.02 | 1.8 | 15 | 0.10 | GCC | A | 0.06 | 4.1 | 35 | 0.24 | GAC | D | 0.22 | 6.8 | 58 | 0.43 | GGC | G | 0.02 | 1.1 | 9 | 0.07 |
GTA | V | 0.33 | 23.8 | 202 | 1.34 | GCA | A | 0.38 | 26.1 | 221 | 1.51 | GAA | E | 0.78 | 29.4 | 249 | 1.56 | GGA | G | 0.57 | 35.5 | 301 | 2.27 |
GTG | V | 0.09 | 6.3 | 53 | 0.35 | GCG | A | 0.08 | 5.5 | 47 | 0.32 | GAG | E | 0.22 | 8.4 | 71 | 0.44 | GGG | G | 0.12 | 7.5 | 64 | 0.48 |
If a transfer RNA (tRNA) is encoded within the organelle’s DNA, the Triplet column entry is colored yellow. Additionally, entries in the RSCU (relative synonymous codon usage) column are colored when the value exceeds 1. AA: amino acid in one-letter code; FPT: frequency per thousand.
As mentioned above, most genes are encoded unilaterally in the mtDNA in M. hakoo. This feature has been confirmed in closely related species, including Coccomyxa sp. and Trebouxiophyceae sp. MX-AZ01, but also in B. braunii and Symbiochloris sp. (ON897766) in Trebouxiales, and Jaagichlorella in Watanabeales. Many species in this Choricystis/Botryococcus clade share the characteristic that the ribosomal genes are dispersed in the cpDNA and are unlikely to form an operon. It will be necessary for future algal research to focus on how mitochondrial genes transcribed from a single strand are expressed (whether they create operons) and, conversely, how the separately encoded chloroplast rRNA genes, which typically form an operon structure, exhibit coordinated transcription.
Medakamo hakoo is stored as strain NIES-4000 in the Microbial Culture Collection at the National Institute for Environmental Studies (NIES Collection, Tsukuba, Japan). The cpDNA and mtDNA genome sequences were deposited in DNA Data Bank of Japan (https://www.ddbj.nig.ac.jp/index-e.html) with accession numbers LC604816 for chloroplasts and LC604817 for mitochondria. The associated BioProject, SRA and BioSample accession numbers are PRJNA771468, SRR16480670, SRR16480671, SRR16480672, SRR16480673 and SAMN22310827, respectively.
This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (16H04813 and 19H03260) to T. K. and by JST-CREST (JPMJCR20S6), JST-OPERA (JPMJOP1832) and JST-GteX (JPMJGX23B0) to S. Matsunaga. The authors thank Mr. Brody Frink (Kyoto University) for editing a draft of this manuscript.