Genes & Genetic Systems
Online ISSN : 1880-5779
Print ISSN : 1341-7568
ISSN-L : 1341-7568

This article has now been updated. Please use the final version.

Testing immediate dosage compensation in Drosophila miranda via irradiation with heavy-ion beams
Masafumi OgawaKazuhide TsuneizumiTomoko AbeMasafumi Nozawa
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: 23-00100

Details
Abstract

Many organisms with heteromorphic sex chromosomes possess a mechanism of dosage compensation (DC) in which X-linked genes are upregulated in males to mitigate the dosage imbalance between sexes and between chromosomes. However, how quickly the DC is established during evolution remains unknown. In this study, by irradiating Drosophila miranda male flies, which carry young sex chromosomes (the so-called neo-sex chromosomes), with heavy-ion beams, we induced deletions in the neo-Y chromosome to mimic the condition of Y-chromosome degeneration, in which functional neo-Y-linked genes are nonfunctionalized; furthermore, we tested whether their neo-X-linked gametologs were immediately upregulated. Because the males that received 2-Gy iron-ion beam irradiation exhibited lower fertility, we sequenced the genomes and transcriptomes of six F1 males derived from these males. Our pipeline identified 82 neo-Y-linked genes in which deletions were predicted in the F1 males. Only three of them showed a one-to-one gametologous relationship with the neo-X-linked genes. The candidate deletions in these three genes occurred in UTRs and did not seriously affect their expression levels. These observations indirectly suggest that DC was unlikely to have operated on the neo-X-linked genes immediately after the pseudogenization of their neo-Y-linked gametologs in D. miranda. Therefore, the dosage imbalance caused by deletions in the neo-Y-linked genes without paralogs may not have effectively been compensated, and individuals with such deletions could have exhibited lethality. Future studies on sex chromosomes at different ages will further reveal the relationship between the age of sex chromosomes and the stringency of DC.

Content from these authors
© 2023 by The Author(s).

This is an open access article distributed under the terms of the Creative Commons BY 4.0 International (Attribution) License (https://creativecommons.org/licenses/by/4.0/legalcode), which permits the unrestricted distribution, reproduction and use of the article provided the original source and authors are credited.
https://creativecommons.org/licenses/by/4.0/
feedback
Top