Genes & Genetic Systems
Online ISSN : 1880-5779
Print ISSN : 1341-7568
ISSN-L : 1341-7568

This article has now been updated. Please use the final version.

METTL21C mediates the occurrence of autophagy and formation of slow-twitch muscle fibers after exercise
Jing QuShuai DangYuan-Yuan SunTao ZhangHai JiangHong-Zhao Lu
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: 23-00320

Details
Abstract

Homeostasis is essential for muscle repair and regeneration after skeletal muscle exercise. This study investigated the role of methyltransferase-like 21C (METTL21C) in skeletal muscle of mice after exercise and the potential mechanism. First, muscle samples were collected at 2, 4, and 6 weeks after exercise, liver glycogen, muscle glycogen, blood lactic acid (BLA) and triglyceride (TG) were assessed. Moreover, the expression levels of autophagy markers and METTL21C in skeletal muscle were analyzed. The results showed that the expressions of METTL21C and MYH7 in the gastrocnemius muscle of mice in the exercise group were significantly higher than that in the control group after exercise, which suggested that long-term exercise promoted the formation of slow-twitch muscle fibers in mouse skeletal muscle. Likewise, the autophagy capacity is enhanced with the extension of exercise in muscles. The findings were further verified in mouse C2C12 cells. We discovered that knockdown of Mettl21c reduced the expression of MYH7 and autophagy level in mouse myoblasts. These findings indicate that METTL21C promotes skeletal muscle homeostasis after exercise by enhancing autophagy, while METTL21C also contributes to differentiation of myogenic and formation of slow muscle fiber.

Content from these authors
© 2024 The Author(s).

This is an open access article distributed under the terms of the Creative Commons BY 4.0 International (Attribution) License (https://creativecommons.org/licenses/by/4.0/legalcode), which permits the unrestricted distribution, reproduction and use of the article provided the original source and authors are credited.
https://creativecommons.org/licenses/by/4.0/legalcode
feedback
Top