IEEJ Transactions on Electronics, Information and Systems
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<System Engineering>
Nonlinear Time Series Prediction Using Wavelet Network with Kalman Filter Based Algorithm
Xueqin ZhaoJianming LuYahagi Takashi
Author information
JOURNAL FREE ACCESS

2006 Volume 126 Issue 10 Pages 1255-1260

Details
Abstract
The idea of combining both wavelets and neural networks has resulted in the formulation of wavelet network, whose basic functions are drawn from a family of orthonormal wavelets(1), which absorbs the advantage of high resolution of wavelets and the advantages of learning and feedforward of neural networks. The usual method to train wavelet networks is the backpropagation (BP) algorithm described by Rumelhart et al. However, this algorithm converges slowly for large or complex problems. In this paper, we propose to train wavelet network for nonlinear time series prediction by using the Unscented Kalman filter (UKF), which outperforms the conventional BP method and several other reference methods. Several simulation results are presented to validate the proposed method.
Content from these authors
© 2006 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top