IEEJ Transactions on Electronics, Information and Systems
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<System Engineering>
A Life Cycle Assessment on a Fuel Production Through Distributed Biomass Gasification Process
Kiyoshi DowakiTsutomu EguchiRui OhkuboYutaka Genchi
Author information
JOURNAL FREE ACCESS

2008 Volume 128 Issue 2 Pages 168-175

Details
Abstract

In this paper, we estimated life cycle inventories (energy intensities and CO2 emissions) on the biomass gasification CGS, Bio-H2, Bio-MeOH (methanol) and Bio-DME (di-methyl ether), using the bottom-up methodology.
CO2 emissions and energy intensities on material's chipping, transportation and dryer operation were estimated. Also, the uncertainties on the moisture content of biomass materials and the transportation distance to the plant were considered by the Monte Carlo simulation. The energy conversion system was built up by gasification through the BLUE Tower process, with either CGS, PSA (Pressure Swing Absorption) system or the liquefaction process.
In our estimation, the biomass materials were the waste products from Japanese Cedar. The uncertainties of moisture content and transportation distance were assumed to be 20 to 50 wt.% and 5 to 50 km, respectively. The capability of the biomass gasification plant was 10 t-dry/d, that is, an annual throughput of 3,000 t-dry/yr. The production energy in each case was used as a functional unit.
Finally, the energy intensities of 1.12 to 3.09 MJ/MJ and CO2 emissions of 4.79 to 88.0 g-CO2/MJ were obtained. CGS case contributes to the environmental mitigation, and Bio-H2 and/or Bio-DME cases have a potential to reduce CO2 emissions, compared to the conventional ones.

Content from these authors
© 2008 by the Institute of Electrical Engineers of Japan
Next article
feedback
Top