IEEJ Transactions on Electronics, Information and Systems
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<Systems, Instrument, Control>
Chronic Co-variation of Neural Network Configuration and Activity in Mature Dissociated Cultures
Satoru OkawaTakeshi MitaDouglas BakkumUrs FreyAndreas HierlemannRyohei KanzakiHirokazu Takahashi
Author information
JOURNAL FREE ACCESS

2014 Volume 134 Issue 3 Pages 338-344

Details
Abstract
Spatio-temporal neural patterns depend on the physical structure of neural circuits. Neural plasticity can thus be associated with changes in the circuit structure. For example, newborn neurons migrate towards existing, already matured neural networks in order to participate in neural computation. In the present study, we have conducted two experiments to investigate how neural migration is associated with the development of neural activity in primary dissociated cultures of neuronal cells. In Experiment 1, using a mature culture, a high-density CMOS micro-electrode array was used to continuously monitor neural migration and activity for more than two weeks. Consequently, we found that even in mature neuronal cultures neurons moved 2.0±1.0 µm a day and that the moving distance was negatively correlated with their firing rate, suggesting that neurons featuring low firing rates tend to migrate actively. In Experiment 2 using a co-culture of mature and immature neurons, we found that immature neurons moved more actively than matured neurons to achieve functional connections to other neurons. These findings suggest that neurons with low firing rates as well as newborn neurons actively migrate in order to establish their connections and function in a neuronal network.
Content from these authors
© 2014 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top